BirdNet: a 3D Object Detection Framework from LiDAR information

BirdNet是一个基于激光雷达信息的3D目标检测框架,其核心思想是将3D点云转换为2D鸟瞰图,通过卷积神经网络进行特征提取,并进行3D目标定向检测,包括高度计算。该框架首先将3维点云投影到3通道的BEV映射中,然后使用faster-rcnn进行初步检测,接着通过2D检测细化过程计算高度,以实现精确的3D检测。在后处理阶段,对2D检测结果进行细化,以提高检测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BirdNet 论文解读

核心思想:

Detection Framework:
第一步:将三维点云信息处理成2D的鸟瞰图。
第二步:利用处理图像的卷积神经网络鸟瞰图,得到位置,朝向,类别等2D信息。
第三步:进行3D Object Oriented Detection,对高度进行计算。

网络框架:

在这里插入图片描述

第一步:将3维点云信息投影成3-channel BEV map.
第二步:利用faster-rcnn检测网络,输出class, 2d bounding box, yaw angle.
第三步:2d detection refinement;输入ground estimation, 输出高度,完成3d检测。

具体内容

BEV Generation
  • maximum height
  • mean intensity
  • the density of points in each cell, which is computed as the number of points in that cell, divided by
    the maximum possible number of points.
    相应的产生一个与BEV map相同尺寸的normalization map
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值