使用BirdNET-V2.4训练自己的数据集

##创作灵感:

BirdNET是一个基于深度学习的鸟类声音识别项目,旨在通过音频数据自动监测和识别鸟类物种。该项目由康奈尔大学鸟类学实验室和马克斯·普朗克生物地理学研究所联合开发,利用机器学习技术,特别是卷积神经网络(CNN),来分析音频记录中的鸟类叫声和歌声。

BirdNET项目介绍里给出了,使用者可以基于预训练模型训练自己的数据集:

按照其介绍流程去做就可以了,本篇内容主要记录一下我自己用Pycharm训练的过程,不涉及调参。

1.下载BirdNET Analyzer

点击下方链接GitHub - kahst/BirdNET-Analyzer: BirdNET analyzer for scientific audio data processing.

2.导入项目,按照requirement安装对应版本的包

3.进入train.py,修改下面的两个参数


                
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值