Cascade R-CNN 论文笔记

前言

在目标检测中,通常会设定一个IoU阈值来区分正样本和负样本,一般将这个阈值设为0.5。但如果以0.5的阈值来训练检测器,检测器会生成许多noisy bbox。如果增大这个阈值,检测器的性能会下降。原因如下:

  • 由于增大了阈值,正样本会减少,在training时会出现过拟合问题。
  • 在training时用于训练检测器的阈值,与inference时输入proposal的IoU相差过大。

因此本文提出了Cascade R-CNN用来解决这个问题,下面进行详细介绍。


介绍

目标检测需要解决两个主要任务:第一,检测器要进行识别,需要区分前景和背景,并为前景中的目标标记正确的类别标签;第二,检测器要进行定位,将不同的目标用bbox框起来。在这两个过程中,检测器会遇到许多close false positive,即那些非常接近正确的bbox,但它们本身又不是正确的bbox

目前许多目标检测方法是基于R-CNN的two-stage方法,它们在training时将IoU阈值u设为0.5,这会产生很多正样本,但在inference时,检测器会产生许多noisy bbox,如下图(a)所示,这是由于大多数close false positive的IoU是大于0.5的。也就是说,当阈值为0.5是,虽然能产生丰富的样本,但很难训练出能拒绝close false positive的检测器。
在这里插入图片描述
如果将用于训练检测器的阈值提高,比如提高到0.7,那么在inference时检测器的输出结果如上图(b)所示,可以看到close false positive的数量变少了。

在这里插入图片描述
上图训练了三个不同的检测器,对应的阈值u分别是u = 0.5,0.6,0.7,其中u是在trainging时训练检测器所用的阈值。图(c)和图(d)分别描述了定位性能和检测性能。在图(c)中,横轴是输入的proposal的IoU,纵轴是proposal经过bbox回归后的IoU,可以看到,定位性能可以看成是相对于输入的proposal的IoU的函数。在图(d)中,横轴是inference时设定的IoU阈值,纵轴是检测器的性能,可以看到,检测性能可以看成是相对于设定的IoU阈值的函数。

在图(c)中,当输入pososal的IoU与阈值接近时,bbox回归输出的IoU是最好的。在图(d)中,当输入的proposal的IoU较低时,u=0.5比u=0.6时的检测性能要好;而当输入的proposal的IoU较高时,u=0.6比u=0.5时的检测性能好。也就是说,一个检测器以一个IoU阈值被训练到最佳之后,如果在inference时输入的proposal的IoU与阈值不同,那么检测器就不能达到最佳性能。这也就意味着,只有当训练检测器用的阈值和proposal自身的阈值较为接近的时候,检测器的性能才最好。否则就会出现mismatch问题(接下来会详细说明)。同时只有当proposal有较高质量时,检测器才会有较好的表现,如上图(b)所示。但是proposal有较高质量意味着阈值u的增大,那么是不是阈值设置的越高,检测器的性能就越好呢?

答案是否定的。在上图(d)中,当阈值为0.7时,检测器的性能反而下降了。这是由于当阈值设定的较高时,在training时大部分proposal的IoU都是低于阈值的,也就是正样本数量很少,会导致过拟合问题。另一个原因是,training时设置的用于训练检测器的阈值,与inference时输入的proposal的IoU相差太多。trainging时IoU阈值u设定较高的检测器,只有在inference时proposal的IoU也较高时,检测器才能获得很好的性能;如果proposal的IoU较低,检测器的性能将不会很好

本文提出了Cascade R-CNN用来处理这些问题。在Cascade R-CNN中,training是stage-by-stage的,用一个阶段的输出训练下一个阶段。为什么会提出这种想法呢?从图(c)中可以看出,所有的点基本都在那条灰线的上面,也就是说,通过bbox回归输出的proposal的IoU比输入的proposal的IoU要高。因此,以一个确定的IoU训练的检测器的输出,可以作为另一个有着更高IoU阈值的检测器的输入。

Cascade R-CNN的大致原理如下

  • 通过调整bbox,每个阶段能找到一系列优质的close false positive来训练下一个阶段。也就是说,在training时,一系列检测器中的IoU阈值是不断增大的,能够克服过拟合问题。
  • 在inference时,输入proposal的IoU是不断增大的,并且与每个阶段的检测器的IoU阈值相差的很小,这使检测精度更高。

mismatch问题
在training阶段,proposal与ground-truth之间的IoU是可以计算出来的,通过设定一个IoU阈值u将proposal划分为正样本和负样本。在inference阶段,由于不知道ground-truth,因此无法计算proposal的IoU,但它们本身是有IoU的。如果这些proposal的IoU与训练检测器时用的IoU阈值相差的很多,就会出现所谓的mismatch问题。


Cascade R-CNN与类似结构的对比

在这里插入图片描述
上图给出了4种不同的结构,

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值