Learning to Compare: Relation Network for Few-Shot Learning 论文笔记

本文介绍了如何使用Relation Network进行小样本和零样本学习,通过学习深度度量来比较图像间的关系,简化了现有方法的复杂性,提高了效率。模型包含嵌入和关系模块,通过episode策略进行训练,损失函数采用均方误差。
摘要由CSDN通过智能技术生成

前言

近年来深度学习模型在视觉任务上取得了巨大的成功,但这种成功有一部分原因来自于庞大的标记数据以及大量的计算资源,这使得这些模型在处理几乎没有标记数据的新类时显得非常乏力。对于我们人类来说,在识别物体时,仅需少量的图像,或者甚至不需要图像而仅仅根据对物体的描述,就能根据以往的知识来识别物体。这是由于我们人类有先验知识,我们会利用自己的先验知识进行学习。如何让模型能够实现这种快速学习呢?元学习(meta learning)就是一种方法,也即学会学习。

本文就是利用对比来实现元学习,通过学习一个可转移的深度度量来比较图像之间的关系,即小样本学习;或者比较图像与类描述之间的关系,即零样本学习。现有的小样本学习方法通常将训练分解为一个辅助的元学习阶段,在该阶段中,以良好的初始条件、embedding或优化策略来学习可转移的知识,也就是先验知识。但是这些方法要么需要复杂的inference机制,要么需要复杂的RNN结构,要么通过优化策略进行微调来进行小样本学习,总之就是很复杂就对了,而本文提出的方法很简洁,也很灵活。

具体来说就是,提出了一个具有两个分支的Relation Network(RN),它通过比较query图像与每个新类中的少量样本图像之间的关系,来进行小样本学习:

  • 首先,嵌入模块(embedding model)为query和training图像生成各自的embedding;
  • 然后,通过一个关系模块(relation model)对这些embedding进行比较,判断它们的类别是否匹配。

RN的训练同样采用了episode策略,嵌入模块和关系模块都是端到端的元学习,注意RN中是一种可学习的非线性比较器,也就是一种可学习的非线性度量,这与MatchingNet和PrototypicalNet不同,MatchingNet中使用的是余弦距离,PrototypicalNet中是固定的线性度量,即平方欧氏距离。本文的RL比其它的方法更简单,因为没有使用RNN;也比其它的方法更快,因为没有微调。而且RL也可以直接泛化到零样本学习中,即在关系模型中比较query图像的embedding与类描述的embedding即可。


实现方法

1. 数据处理

对于小样本学习任务,有三种数据集:训练集,支持集和测试集。支持集和测试集共享同一个标签空间,而训练集有自己的标签空间,并且不和另外两种数据集共享。如果支持集中有 C C C个类,每个类有 K K K个带标签的样本,那么就可以称为 C C C-way K K K-shot。

虽然只用支持集原则上也可以训练出一个分类器,以将标签 y ^ \hat y y^分类给测试集中的样本 x ^ \hat x x^,但由于支持集中缺少带标签的样本,由此训练出的分类器的性能并不能让人满意。因此就要在训练集上进行元学习,以提取出先验知识,从而可以更好的在支持集上进行小样本学习,进一步更好的对测试集进行分类。

一种有效利用训练集的方法就是通过基于episode的训练来模拟小样本学习。在每次迭代中,一个episode是指,从训练集中随机选出 C C C个类别,每个类中选择 K K K个带标签的样本作为一个样本集(sample set) S = { ( x i , y i ) } i = 1 m S=\lbrace (x_i,y_i) \rbrace ^m_{i=1} S={ (xi,yi)}i=1m

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning(小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系。关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值