Learning to Compare: Relation Network for Few-Shot Learning. (学习比较:用于few-shot learning 的关系网络)

1. 摘要

文章提出了一种概念上简单、灵活、通用的框架用于 few-shot learning 问题。few-shot learning 问题需要分类器必须在每个新类只给出几个样本情况下识别新的类(新的类是指在训练阶段没有见过的类)。文章提出了网络叫做 — 关系网络(Relation Networks,RN),一个端到端(end to end)的网络。在 meta-training 阶段,网络学会学习一个深度距离度量在一个剧集(epoch)内比较少量几张图片,并且每个剧集(epoch)设计来模仿 few-shot learning 的设置。一旦训练好,RN 就可以在不进行任何更新的情况下对来自新的类的样本进行分类,分类过程:将 query 中的样本与 support 中样本计算关系得分(relation score)。RN 除了在 few-shot leanring 问题上提升了性能,而且可以很容易的扩展到 zero-shot leanring(零样本学习) 问题上。广泛的实验证明文章提出的简单的网络提供了一个对于 few-shot leanring 和 zero-shot leanring 统一且有效的方法。

(1)新的类;(2)每个类的训练样本只有一个;(3)学习一个网络映射输入空间到新的空间,比较相似度;
这三个特征满足 few-shot learning,meta-learning 的基本特征,而且可以看成属于 meta-learning 中的度量学习 (metric learning)。

(推荐阅读以下链接,对理解本文很有帮助:https://blog.csdn.net/weixin_37589575/article/details/92801610

2. 介绍

深度学习已经在计算机视觉领域取得了巨大的成功,然而有监督的学习模型需要大量的有标签的数据和大量的迭代,这严重的限制了对于新类别的可扩展性(对新数据的标记成本),还有一个更根本的问题,就是对新出现的东西(例如新设备)或者稀有种类(例如稀有动物)的实用性,这两种情况下,大量标记的样本根本不存在。相比之下,人类可以在具有很少的监督信息的情况下甚至没有监督信息的情况下快速学习新的概念(分别对应 few-shot leanring 和 zero-shot leanring)。例如一个小孩可以从书本上的单个图片推广归纳 “斑马” 的概念,甚至在可以听到一个类似于“条纹马”的描述下都可以学习到“斑马”的概念。然而我们最好的深度学习 (Deep Learning, DL) 模型却需要成百上千个样本。这个机器智能和人类智能的差距,推动鼓励我们来关注 few-shot learning 和 one-shot leanring 问题。数据增强技术和正则化技术可以缓解在少量数据集情况下的 过拟合 (overfitting) 问题,但是并没有很好的解决它。因此开始将 meta-learning 用于 few-shot learning 问题。

这种方法将训练分解成了一个辅助的 meta training 阶段,其中学习可以迁移的知识用于识别新的类。这种可以迁移的知识主要可以分为:

  1. 好的初始化。典型的有 MAML,《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》:https://www.cs.utexas.edu/~sniekum/classes/RL-F17/papers/Meta.pdf
  2. embeding 函数。典型的有 Matching Networks: https://blog.csdn.net/weixin_37589575/article/details/93844850,Prototypical Networks:https://blog.csdn.net/weixin_37589575/article/details/92768668
  3. 优化策略:《Optimization as a Model for Few-Shot Learning》:https://openreview.net/pdf?id=rJY0-Kcll.

相对应的,在新的需要识别新类的 meta-testing 的问题任务上:

  1. 基于学习到的初始化对网络进行微调;
  2. 直接前向传播而无需更新参数
  3. 基于学习到的优化策略对网络进行微调;

对于 zero-shot leanring,通常我们已有的信息不是“类别”这样的标签信息,可能是一个关于“类别”的一个描述信息,例如把不告诉你这个图片中的动物是“斑马”,而是告诉你图片中的动物是一种“条纹马”。

本文的方法可以分类为上述的第二种方法,但是最大的一点不同是,RN 不仅学习了一种 embedding 函数,还自己学习了一个度量。先前的方法中度量都是手动人为预先定义的,例如 Siamese Networks 和 Matching Networks 使用的余弦距离,以及 Prototypical Networks 中的欧氏距离。文章进一步学习了一个可迁移(而不是手动人为定义的)的度量来比较图片之间的关系(Relation)。这也可以看成学习一个非线性的比较器,而不是一个固定的线性的比较器,文中 Section 5 简单分析了一下这样的好处。这里又出现了归纳偏差:多次的 Embedding 和 Relation 的非线性学习阶段,这可以更容易学习到一个泛化能力强的解决方案。

具体而言,RN 包含两个主要的模块:

  1. Embedding Module:为样本生成一个表示(representation)。
  2. Relation Module:确定需要比较的样本是否来自于同一类。

训练的策略还是标准的在 meta-learning 中使用最多的基于剧集的策略(Episode-based strategy)。

3. 相关工作

看过我之前博客的朋友都应该知道,我一般不介绍相关工作的,但是这一篇论文的相关工作真的写得太好了。另外本文的作者 Flood Sung 可以在知乎直接搜索找到,他的文章特别的棒。

文章将 Meta-learning (Learning to learn)方法大致分为三类:

  1. 学习微调:MAML(《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》) 是这类方法的范例之一。MAML 的思想是学习一个良好初始化参数 (initialization parameter),这个初始化参数在遇到新的问题时,只需要使用少量的样本 (few-shot learning) 进行几步梯度下降就可以取得很好地效果( 参见后续博客 )。另一个典型是《Optimization as a Model for Few-Shot Learning》,他不仅关注于初始化,还训练了一个基于 LSTM 的优化器 (optimizer) 来帮助微调。
  2. 基于 RNN 的记忆存储:最直观的方法,使用基于 RNN 的技术记忆先前 task 中的表示等,这种表示将有助于学习新的 task。可参考《Meta networks》和 《Meta-learning with memory-augmented neural networks.》
  3. Embedding 和 度量学习(Metric Learning):主要可以参考《Learning a Similarity Metric Discriminatively, with Application to Face Verification.》,《Siamese neural networks for one-shot image recognition》,《Siamese neural networks for one-shot image recognition》,《Matching networks for one shot learning》,《Prototypical Networks for Few-shot Learning》,《Learning to Compare: Relation Network for Few-Shot Learning》。
    核心思想:学习一个 embedding 函数,将输入空间(例如图片)映射到一个新的嵌入空间,在嵌入空间中有一个相似性度量来区分不同类。我们的先验知识就是这个 embedding 函数,在遇到新的 task 的时候,只将需要分类的样本点用这个 embedding 函数映射到嵌入空间里面,使用相似性度量比较进行分类。

这里加一下我自己的一些理解:

  1. 基于 RNN 的记忆 (RNN Memory Based) 有两个关键问题,一个是这种方法经常会加一个外部存储来记忆,另一个是对模型进行了限制 (RNN),这可能会在一定程度上阻碍其发展和应用。
  2. 学习微调 (Learning to Fine-Tune) 的方法需要在新的 task 上面进行微调,也正是由于需要新的 task 中 support set 中有样本来进行微调,目前我个人还没看到这种方法用于 zero-shot learning 的问题上,但是在《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》的作者 Chelsea Finn 的博士论文《Learning to Learn with Gradients》中给出了 MAML 的理论证明,并且获得了 2018 ACM 最佳博士论文奖,还有一点就是 MAML 可以用于强化学习,另外两种方法多用于分类问题。链接:https://mp.weixin.qq.com/s/AdlwI-nbVlDWCj0o5LR7Sw
  3. 度量学习 (Metric Learning),和学习微调 (Learning to Fine-Tune) 的方法一样不对模型进行任何限制,并且可以用于 zero-shot learning 问题。虽然效果比较理想但是现在好像多用于分类任务并且可能缺乏一些理论上的证明,比如相似性度量是基于余弦距离还是欧式距离亦或是其他?为什么是这个距离?(因为 embedding 函数是一个神经网络,可解释性差,导致无法很好解释新的 embedding 空间),虽然本文将两个需要比较的 embedding 又送到一个神经网络(而不是人为手动选择相似性度量)来计算相似性得分,但是同样缺乏很好地理论证明。

4. 方法论

4.1 问题定义

在这里插入图片描述
这里为了方便读者和自己理解,对原论文的这一部分做了修改,用了最 meta-leaning 的解释(其实作者在知乎文章里面也是用的我这里的描述,不知道为什么在论文里面换了一种描述方式(可能为了描述更加简单),其实本质是一样的)。

在 few-shot learning 中有一个术语叫做 N N N-way K K K-shot 问题,简单的说就是我们需要分类的样本属于 N N N 个类中一种,但是我们每个类训练集中的样本只有 K K K 个,即一共只有 N ∗ K N * K NK 个样本的类别是已知的(其实这就是 Support Set)。

在 Meta-learning 中之前学习的 task 我们称为 meta-training task,我们遇到的新的 task(包含新的类)称为 meta-testing task。因为每一个 task 都有自己的训练集和测试集,因此为了不引起混淆,我们把 task 内部的训练集和测试集一般称为 Support setQuery set。简单画了一个示意图,前面三个是三个 meta-training task (当然实际需要很多这样的 meta-training task 才能学到我们需要的先验知识),最后一个就是 meta-testing task。我们最后评价我们的 meta-learning 方法的好坏就是在红色标记部分上的 performance。

4.2 模型

RN 包含两个模块:(1)Embedding Module: f φ f_{\varphi} fφ 和(2)Relation Module: g ϕ g_{\phi} gϕ
x j x_{j} xj 来自于 Query Set,而 x i x_{i} xi 来自于 Support Set。先用 Embedding 模块进行映射,得到 f φ ( x i ) f_{\varphi}\left(x_{i}\right) fφ(xi) f φ ( x j ) f_{\varphi}\left(x_{j}\right) fφ(xj) ,然后用一个连接算子: C ( f φ ( x i ) , f φ ( x j ) ) \mathcal{C}\left(f_{\varphi}\left(x_{i}\right), f_{\varphi}\left(x_{j}\right)\right) C(fφ(xi),fφ(xj)),文中使用的是直接将两个向量串联起来,并且也说明其他的选择也是可行的。然后得到的结果送到 Relation Module 中计算关系得分,最后会产生一个 0 到 1 的关系得分来表明 x i x_{i} xi x j x_{j} xj 的相似度。对于 N-way 的分类任务,一个 Query Set 中的样本会有 N 个得分,最高的得分就是我们的预测类。对于 K-shot 的任务,对于 K 个 Support 中的样本 Embedding 之后的向量求和(个人觉得这个求和方案还有待商榷,这样可以从模型多 shot 的表现一般中得出猜测),然后和 Query Set 中的向量串联。和 One-shot 的保持一致。
目标函数:

φ , ϕ ← argmin ⁡ φ , ϕ ∑ i = 1 m ∑ j = 1 n ( r i , j − 1 ( y i = = y j ) ) 2 \varphi, \phi \leftarrow \underset{\varphi, \phi}{\operatorname{argmin}} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(r_{i, j}-\mathbf{1}\left(y_{i}==y_{j}\right)\right)^{2} φ,ϕφ,ϕargmini=1mj=1n(ri,j1(yi==yj))2

其中

r i , j = g ϕ ( C ( f φ ( x i ) , f φ ( x j ) ) ) , i = 1 , 2 , … , N r_{i, j}=g_{\phi}\left(\mathcal{C}\left(f_{\varphi}\left(x_{i}\right), f_{\varphi}\left(x_{j}\right)\right)\right), \quad i=1,2, \ldots, N ri,j=gϕ(C(fφ(xi),fφ(xj))),i=1,2,,N

这里分类问题一般使用交叉熵,但是由于最后得分是一个 0 到 1 的关系得分,也可以看成是一个回归问题,因此使用了均方误差(mean square error, MSE)作为损失函数。

5. 其他

这里有个比较有趣的说法在 Section 5.1,为什么用自己学的网络得到的关系得分可能比手动定义的余弦距离和欧式距离好,这是由于计算欧式距离等距离的时候,向量之间各个维度之间是相互独立的(这是默认的假设),但是这也假设或者说期望 embedding function 足够好可以使学到的向量中各个维度相互独立,但是这并不能保证一定实现,因此将连个向量串联(或者别的一些操作)之后送到一个神经网络得到相似性得分可能会有更好的效果

实验,结论,zero-shot 的相关部分,网络架构(两个模块都是CNN)等请参考原论文。

6. 论文链接

《Optimization as a Model for Few-Shot Learning》:https://openreview.net/pdf?id=rJY0-Kcll.
《Siamese neural networks for one-shot image recognition》:http://www.cs.toronto.edu/~gkoch/files/msc-thesis.pdf.
《Matching networks for one shot learning》: http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf.
《Learning to Compare: Relation Network for Few-Shot Learning》:http://openaccess.thecvf.com/content_cvpr_2018/papers/Sung_Learning_to_Compare_CVPR_2018_paper.pdf.
《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》:https://www.cs.utexas.edu/~sniekum/classes/RL-F17/papers/Meta.pdf
《Meta networks》:https://pdfs.semanticscholar.org/3ecc/71263d5dd8a51438e351f0a27fba5a6e7592.pdf
《Meta-learning with memory-augmented neural networks.》:http://proceedings.mlr.press/v48/santoro16.pdf
《Prototypical Networks for Few-shot Learning》:http://papers.nips.cc/paper/6996-prototypical-networks-for-few-shot-learning.pdf
《Learning a Similarity Metric Discriminatively, with Application to Face Verification.》:http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf.

  • 10
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值