【数学建模笔记】评价模型-基于熵权法的TOPSIS模型

视频课地址:https://www.bilibili.com/video/BV1eRyVYUEhg
本系列文章和课程一样,只使用Python实现,好久没玩数学建模了
国赛中不能再用TOPSIS,可以做辅助算法。

1. 算法原理

熵权TOPSIS方法是一种结合熵权法和TOPSIS的决策分析模型。

  1. 首先使用熵权法确定各指标的权重;
  2. 然后采用TOPSIS方法对备选防范进行评价和排序。

(可以把TOPSIS换成别的评价方法,或者赋权重方法换成不是熵权法的方法,比如随机森林,也可以在TOPSIS之前聚个类)

1.1 熵权法(Entropy Weight Method)

熵权法基于信息熵理论,用于计算决策指标的权重。信息是可以反映指标值分布的均匀性,信息熵越大,指标值的分布越均匀,其所含信息越少,相应的权重也越小。

1.1.1 标准化处理

设有 m m m个评价对象, n n n个评价指标。原始数据矩阵为 X = [ x i j ] \boldsymbol{X}=[x_{ij}] X=[xij],其中 x i j x_{ij} xij表示第 i i i个评价对象在第 j j j个指标上的表现,标准化后的数据矩阵 R = [ r i j ] \boldsymbol{R}=[r_{ij}] R=[rij]可通过以下公式得到:
r i j = x i j ∑ i = 1 m x i j 2 r_{i j}=\frac{x_{i j}}{\sqrt{\sum\limits_{i=1}^{m} x_{i j}^{2}}} rij=i=1mxij2 xij
需要统一量纲,进行标准化处理,要不然算法不容易收敛。

1.1.2 计算熵值 e j e_j ej

  • p i j = r i j ∑ i = 1 m r i j p_{i j}=\frac{r_{i j}}{\sum\limits_{i=1}^{m} r_{i j}} pij
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魔理沙偷走了BUG

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值