1马尔科夫链
在概率论里,弹硬币每次都是独立的,我上次弹是正面或反面完全对我下一次弹的结果没有任何影响。而世界上有很多事物前一次和后一次是有联系的,描述这种情况就可以利用马尔科夫链。
比如一台汽车的速度是连续变化的,它下一秒的速度肯定和上一秒有关系,并且是一个概率关系。比如一台跑车V=100时下一秒速度是120的概率是百分之50,但是一台卡车相同情况下下一秒是120的概率却很小,卡车和跑车的速度就是两个马尔科夫链模型。他是连续变化的。
所以马尔科夫链区别于独立抽样主要强调这个连续的关系。这里说的和前一秒有关系就是一阶的,和前2秒就是二阶的,以此类推。
2 隐马尔科夫链
参考http://blog.sina.com.cn/s/blog_953f8a550100zh35.html
隐马尔科夫链与马尔科夫链不同的就是,比如每天的温度是马尔科夫链,但是我观测不到温度,我没有温度计,我只能观测路人的穿多穿少情况,这肯定是随机的,因为再冷也有可能有人穿的少,但是比例会少。比如0度随便找个路人穿丝袜的概率肯定低,那我就以不同温度是否穿丝袜为准得到一组观测数据来推测一年里每天的温度.........我还真觉得每次统计全中国的比例还真有可能通过这个信息推算出一年里365天温度的变化。
本文介绍了马尔科夫链的基本概念及其应用案例,进一步探讨了隐马尔科夫链的概念及如何通过观测数据推断隐藏状态。马尔科夫链是一种用于描述一系列具有马尔科夫性质的随机变量的数学模型,隐马尔科夫链则是在此基础上增加了观测数据,用以推测隐藏的状态序列。
888

被折叠的 条评论
为什么被折叠?



