基于归纳的知识图谱推理学习笔记整理

源于:知识图谱:方法、实践与应用

基于归纳的KG推理

        基于图结构的推理

                基于知识图谱路径特征的PRA算法

                        尾实体链接预测

                        头实体链接预测

                        排序问题

                        PRA将存在于KG中的路径当做特征,通过图上的计算对每个路径赋予相应的特征值,利用这些特征学习一个逻辑斯蒂回归分类器完成关系推理。

                        每一个路径可以当作对当前关系判断的一个专家,不同的路径从不同的角度说明了当前关系的存在语法。

                PRA的演化算法

                        在PRA中的路径是连续的切在路径中的关系是同向的,CoR-PRA(Constant and Reversed Path Ranking Algorithm)通过改变PRA的路径特征搜索策略,促使其能够涵盖更多语义信息的特征,主要是包含常量的图结构特征,CoR-PRA中搜索图结构特征的步骤:

                        1、生成初步的路径;

                        2、通过PRA计算路径特征的概率;

                        3、生成候选的常量路径;

                        4、生成更长的路径特征候选集。

                        https://github.com/noon99jaki/pra

                基于规则学习的推理

                        具有精确且可解释的特性,在小型的领域知识图谱上,规则可以由领域专家提供,但大型综合的KG方面,人工提供规则效率比较低,很难做到全面和准确。规则一般包含两个部分:规则投head和规则主体body,形式为:reule:head<-body。

                        霍恩规则:规则主题中只包含有肯定形式出现的原子而不包含否定形式出现的原子。

                        路径规则:r0(e1,e(n+1) <- r1(e1,e2)^r2(e2,e3)^...^rn(en,e(n+1)))。路径规则是霍恩规则的一个子集,霍恩规则又是一般规则的一个子集。

                       规则学习过程中,对于学习到的规则一般有三种评估方法:支持度、置信度、规则头覆盖度。

                       常见的算法:AMIE:是一种霍恩规则,也是一种闭环规则,整体规则可以在图中构成一个闭环结构。

                基于表示学习的推理

                        通过将知识图谱中包括实体和关系的元素映射到一个连续的向量空间中,为每个元素学习在向量空间中表示,向量空间中的表示可以是一个或多个向量或矩阵。表示学习让算法在学习向量表示的过程中自动捕捉、推理所需的特征。通过训练学习,将KG中离散符号表示的信息编码在不同的向量空间表示中,使得KG的推理能够通过预设的向量空间表示之间的计算自动实现,不需要显式的推理步骤。

                        常见的算法:TransE【11】、TransH【46】、TransR【8】、TransD【47】、ComplEx[49]、ANALOGY【50】、NTN【51】、ConvE【52】

基于归纳的KG推理思维导图整理:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值