主成分分析的(Principal Components Analysis,PCA)多角度解析

1.问题的提出

PCA算法作为经典的机器学习算法,从提出到如今的几十年历史中,其所蕴含的思想一直伴随着机器学习算法的发展。这里我们从不同的角度探讨PCA能够图像用于的图像去噪、压缩和特征提取的数学原理和所包含的的物理含义。例如:(1)为何PCA对包含较小方差的高斯噪声图像具有较好去噪能力?(2)RPCA为何能够改进PCA在去噪时的缺陷?(3)为何PCA采用样本的协方差矩阵的前 k 个特征向量矩阵构造投影空间?

(1)特征提取
随着互联网的普及,人们所接触的数据量正以成千上万的倍数增长,自然而然产生了一个问题,在海量数据面前,我们能如何提取出关键的信息用以减少所需处理数据量,提升效率。以淘宝平台上品牌手机日记录数据为例:

手机品牌 浏览量 访客数 下单数 成交数 成交金额
华为 N1 F1 X1 C1 J1 小米 N2 F2 X2 C2 J2 iphone N3 F3 X3 C3 J3 三星 N4 F4 X4 C4 J4 魅族 N5 F5 X5 C5 J5

从表中可知,下单数、成交数和成交金额,浏览量和访客量为强相关。于是上述5维的数据能够利用2维的数据较为准确的表示出来,PCA通过空间投影的方法解决了上述问题。
(2)图像去噪
加性噪声定义式:

L = A + E(1)

其中, L 为污染图,A为纯净图,且为low-rank矩阵, E 为噪声图像,且为稀疏矩阵。

PCA算法去噪的目标模型为:

minALA22s.trank(A)k(2)

通过优化目标函数,获得去噪图像。值得一提的是噪声矩阵 E 中的元素的分布必须是方差较小的高斯分布,即噪声矩阵为高斯矩阵。此处存在两个疑问:在利用PCA算法用于去噪时(1)为何噪声矩阵的方差较小,(2)为何噪声矩阵必须为高斯矩阵,都将会在下文中一一解释。

2.PCA的求解过程

步骤一:提取多幅图像的特征向量,组合而成特征矩阵Y=(y1,y2,,yn)Rm×n

步骤二:获得特征矩阵 Y 的协方差矩阵M,将协方差矩阵进行特征值分解,并提取按从大到小排序的特征值所对应的前 k 个特征向量组成特征向量矩阵PRn×k

步骤三:将特征矩阵 Y 向特征向量矩阵P张成的投影空间中投影,获得投影特征 XRm×k ,即 X=YP,k<<n .

由上述步骤可知获得投影特征 X 的维数远远小于特征矩阵Y的维数。从特征提取的角度来看,可以认为PCA算法提取出了特征矩阵 Y <script type="math/tex" id="MathJax-Element-44">Y</script>中其主要贡献的信息(通过特征值大小衡量),从图像去噪的角度看,PCA算法提取出了主要信息而忽略的信息可以认为是噪声。

PCA算法的求解关键在于投影空间的选取,即投影矩阵的获得,于是我们会有疑问:为什么选择样本协方差矩阵的特征向量构造投影矩阵?首先,我们知道投影空间选取的一般原则可归纳为:(1)投影特征在投影空间中应尽可能的分散,相似性较低,以保证投影特征包含更充分的信息,同时也能降低投影矩阵的维数;(2)投影矩阵应与原特征矩阵尽可能的接近,以减少信息的丢失。基于上述原则 PCA算法可以从最大方差理论,PCA算法的最小平方误差理解,继而推导出投影矩阵的最优形式(为了直观与方便,下文以二维情况为例进行讲解)。

3.PCA的最大方差理论解释

信号处理中认为信号具有较大的方差,噪声有较小的方差。


特征分布图


L1投影图


这里写图片描述

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值