💗博主介绍💗:✌在职Java研发工程师、专注于程序设计、源码分享、技术交流、专注于Java技术领域和毕业设计✌
温馨提示:文末有 CSDN 平台官方提供的老师 Wechat / QQ 名片 :)
介绍
人员跌倒检测系统在社会安防和医疗卫生领域扮演着关键的角色。随着老年人口的不断增加,跌倒事故对健康和生活质量的威胁日益突出。因此,设计一种可靠、高效的人员跌倒检测系统成为当前科技研究的迫切需求。本研究针对这一需求,以Android平台为基础,致力于打造一款具备实时性、灵活性和准确性的人员跌倒检测系统。
在考虑手机计算资源有限的前提下,采用了轻量化的YOLOv5模型,以适应移动设备的性能限制,提高检测准确性。系统提供了多种检测模式,包括基于图片、视频和实时摄像头的跌倒检测,使用户能够根据需求选择不同的检测方式和模型配置。该设计既满足了安全监控的需求,又为医疗机构提供了一种实用的跌倒事件辅助检测工具。
关键词:人员跌倒检测;Android平台;深度学习模型;移动端应用
演示视频
人员跌倒检测系统的设计与实现(Yolov Python38 深度学习)_哔哩哔哩_bilibili
系统功能
3.3 系统流程的分析
3.3.1 模型训练流程
模型训练流程包括数据准备、模型选择、训练配置、模型训练、验证和优化等关键步骤。首先,收集丰富的视频数据集并进行标注,以供模型训练使用。然后,选择适当的深度学习模型,如基于YOLOv5的优化模型,具有高效的目标检测能力。接着,设置训练参数,并将数据集输入模型进行训练。随后,使用验证集评估模型性能,并根据结果进行调整和优化。最后,保存训练好的模型,以备在实际应用中进行推理。
3.3.2 Android端部署集成流程
利用脚本将PyTorch YOLOv5模型导出为ONNX格式,并使用onnx-simplifier工具简化网络结构以提高模型在Android上的效率。然后,利用TNN转换工具将ONNX模型转换为TNN模型,确保在Android端的兼容性和正确性。在Android Studio中配置开发环境,导入TNN模型和相关库,并通过C++实现的YOLOv5核心算法进行模型推理。最后,根据模型输入大小和锚点信息进行参数设置,并解决可能出现的异常错误,确保模型在Android上准确运行。
3.4 系统性能需求分析
轻量化的YOLOv5s05模型在普通Android手机上表现出良好的性能。通过降低计算量和参数量,该模型在实现实时检测方面取得了显著进展。尽管相对于原始模型可能存在轻微的精度损失,但在实际业务中,仍能保持合理的检测精度。在手机上,该模型的CPU和GPU推理速度约为30ms和25ms,确保了实时检测的需求。综上所述,轻量化的YOLOv5s