机器学习|决策树

作   者:echoy189
介   绍:spark数据处理与算法交流
公众号:spark推荐系统

决策树(decisiontree)学习的算法通常是一个递归地选择最优特征, 并根据该特征对训练数据进行分割, 使得各个子数据集有一个最好的分类的过程

目录

  1. 初步了解

  2. 决策树的类型

  3. 决策树过拟合

  4. 代码展示

一) 初步了解

目标:通过大量的数据生成一棵非常好的树,用这棵树来预测新来的数据

决策树的生成是数据不断分裂的递归过程。每一次分裂,尽可能让类别一样的数据在树的一边,当树的叶子节点的数据都是一类的时候,则停止分裂。(if else 语句即决策树模型本身)

当构建好一个判断模型后,新来一个用户后,可以根据构建好的模型直接进行判断,比如新用户特性为:无房产、单身、年收入55K。那么根据判断得出该用户无法进行债务偿还。这种决策对于借贷业务就有比较好指导意义

决策树的特点

1.可以处理非线性问题

2.可解释性强

3.模型简单,模型预测效率高

4.不太容易显示地使用函数表达,不可微

 

那么如何生成决策树呢?

1.将原始数据集筛选,分类成子数据集

     a 每次分成几份?

     b 以什么条件来分份?

2.对生成的子数据集不断分裂,什么时候停止?

3.利用最终生成的n份数据的共性来代表这个节点,什么是共性?

二) 决策树的类型

gini系数 (CART树,分类问题)

信息增益 (ID3,分类问题)

信息增益率 (C4.5,分类问题)

MSE (CART树,回归问题)

不同的分裂计算标准对用不同的类别的决策树

gini系数(用于CART分类树)

公式:

Gini系数越小,代表D集合中的数据越纯

多个节点的Gini系数:Gini(D)=|D1|/|D|*Gini(D1)+|D2|/|D|*GINI(D2)

分裂:优先选择( 分裂前的Gini系数 -  分类后的多个节点的Gini系数) 最大的分类条件

使用iris数据集来理解决策树(cart树)中的Gini系数

1.数据集中三种花(setosa,versicolor,virginica)每种各50个样本,一共150样本

2.第一次分裂条件为petal length(cm) <= 2.45

3.按照True/False分成左右两个子节点

4.左边(True)子节点的样本只有setosa 类50个 ,所以该节点的Gini系数为 Gini(D)=1-(1*1 +0+0 ) =0

5.右边(False)子节点的样本有versicolor和virginica各50个,所有该节点的Gini系数为

Gini(D) = 1- (0.5*0.5+0.5*0.5) = 0.5

6.然后右边节点在根据petal width(cm) <= 1.75 进行分类,又得到左右两个节点

7.同理左节点gini系数=0.168 ,右节点gini系数 =0.0425

注:Cart树 均为二叉树

信息增益(用于ID3分类树)

信息:I(X = xi)= -log₂p(xi)

信息熵:

一个集合中信息熵越低代表这个集合中的纯度越高(和gini系数一致)

信息增益:(分裂前的信息熵 - 分裂后的信息熵)

一次分裂后的信息增益越大,代表这次分裂提升的纯度就越高

 

举个例子来了解下信息增益

整体熵:

E(S) = -5/15• log₂(5/15) - 10/15•log₂(10/15) = 0.9182

性别熵

E(g男) = -3/8 • log₂(3/8) - 5/8 •log₂(5/8) = 0.9543

E(g女) = - 2/7• log₂(2/7) - 5/7 •log₂(5/7) = 0.8631

所以性别信息增益为:

IGain(S,g) =E(S) - 8/15E(g男) -7/15E(g女) =0.0064

活跃度熵

E(a高) = 0    E(a中) = 0.7219     E(a低) =0

所以活跃度信息增益为:

IGain(S,a) =E(S) - 6/15E(a高) - 5/15E(a中) -4/15E(a低)  =0.6776

 

使用ID3会有一个问题,假如分裂条件选择的是uin,那么会分成15个节点。此时每个叶子节点只有一个样本,信息熵都为0,此时的信息增益最大。所以ID3会倾向于特征值多的特征去分裂,如果使用uin去分裂,其实并不是我们想看到的结果,相当于没分裂。在ID3算法的基础上,进行算法优化提出的一种算法C4.5

信息增益率(用于C4.5分类树)

对于多叉树,如果不限制分裂多少支,一次分裂就可以将信息熵降为0,如何平衡分裂情况与信息增益?

信息增益率:信息增益 /类别本身的熵

分别计算三种分类方法的信息增益率(还是上面的图)

GR(1)=Gain/-(6/15*log6/15+5/15*log5/15+4/15*log4/15)

GR(2)=Gain/-(11/15*log11/15+ 4/15*log4/15)

GR(3)=Gain/-(6/15*log6/15 + 9/15*log9/15)

 

MSE(用于CART回归树)

当前节点的预测值:取的是当前节点所有样本的y值加和 除以 样本个数 (即当前样本的label的均值)

每个节点的MSE:1/n•Σ|y -y_hat|

MSE增益:分裂前的MSE - 分类后的MSE

ID3/C4.5/CART算法总结

使用最多的还是CART树,既可以做分类又可以做回归

三) 决策树过拟合问题

如果训练模型的时候不限制树的生长,最终都会将结果分到最好(fully growntree) ,从而导致过拟合。可以通过树的剪枝,来防止过拟合

预剪枝

提前制定好规则人为的让树不能完全生长

max_depth:设置树的最大深度

min_samples_split:一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生

min_samples_leaf:一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生

max_features:max_features限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃

注:一般使用预剪枝防止决策树过拟合

 

后剪枝

首先利用训练集生成一棵fullygrown tree

把验证集中的数据放到tree中进行分类,记录结果得分

自叶子节点至根节点依次尝试cancle掉一次分裂(剪枝)记录验证集得分

选取最好得分最好的树的形态作为最终的树

四) 代码展示

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn import tree
data = pd.read_csv("D:\\study\\python_project\\my_study\\data\\mushrooms.csv")
# print(data)
data.head()

from sklearn.preprocessing import LabelEncoder

labelencoder = LabelEncoder()
for col in data.columns:
    data[col] = labelencoder.fit_transform(data[col])

print(data.shape)

y = data['class']
X = data.drop('class',axis=1)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=0,train_size=0.8)
columns = X_train.columns
print(columns)

# 数据标准化
from sklearn.preprocessing import StandardScaler
ss_X = StandardScaler()
ss_y = StandardScaler()
X_train = ss_X.fit_transform(X_train)
X_test = ss_X.transform(X_test)

from sklearn.tree import DecisionTreeClassifier
model_tree = DecisionTreeClassifier()
model_tree.fit(X_train,y_train)
y_prob = model_tree.predict_proba(X_test)[:,1]
y_pred = np.where(y_prob > 0.5,1,0)
model_tree.score(X_test,y_pred)

# 可视化树图
data_ = pd.read_csv("D:\\study\\python_project\\my_study\\data\\mushrooms.csv")
data_feature_name = data_.columns[1:]
data_target_name = np.unique(data_["class"])

import pydotplus
from sklearn import tree
from IPython.display import Image
import os
os.environ["PATH"] += os.pathsep + 'D:\solt\graphviz\bin'
dot_tree = tree.export_graphviz(model_tree,out_file=None,feature_names=data_feature_name,class_names=data_target_name,filled=True, rounded=True,special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_tree)
img = Image(graph.create_png())
graph.write_png("out.png")

往期精选

机器学习|支持向量机SVM(一)

机器学习|支持向量机SVM(二)

机器学习|支持向量机SVM(三)

机器学习|支持向量机SVM(四)

机器学习|主成分分析法PCA
机器学习-线性回归(一)
机器学习-线性回归(二)
机器学习|梯度下降法
机器学习|逻辑回归


长按识别二维码关注我

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值