【语义分割系列:九】PSPNet 论文翻译笔记解析

PSPNet是2017年CVPR提出的一种语义分割网络,通过金字塔池化模块收集不同区域的上下文信息,解决FCN在处理场景解析时的局限性。该文介绍了PSPNet的架构、多尺度特征融合、Pyramid Pooling Module和深度监督策略,并在ImageNet等挑战赛中取得优异成绩。
摘要由CSDN通过智能技术生成

2017 CVPR

Pyramid Scene Parsing Network

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet) GitHub stars

PyTorch Implementations for DeeplabV3 and PSPNet GitHub stars

Pytorch implementation of pspnet GitHub stars

Introduce

本文提出的金字塔池化模块( pyramid pooling module)能够聚合不同区域的上下文信息,从而提高获取全局信息的能力。

场景解析(Scene Parsing)

难度与场景的标签密切相关。大多数先进的场景解析框架大多数基于FCN

FCN存在的问题

  • Mismatched Relationship

上下文关系匹配对理解复杂场景很重要,例如在,在水面上的大很可能是“boat”,而不是“car”。虽然“boat和“car”很像。FCN缺乏依据上下文推断的能力。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值