线性代数的本质_03_行列式、逆矩阵、列空间和零空间

行列式:

回顾之前的空间变换,在数学上体现在行列式的乘法,有的空间变换会拉伸空间,有的会压缩,甚至,有的变换会将某个象限压缩,另外的象限拉伸,那么这些空间被拉伸了多少呢?。在线性代数中,行列式的计算是比较容易的,就是左上角到右下角元素乘积之和减去右上角左下角元素乘积之和,计算出来的值可正可负,那么这个值在空间中代表什么呢?

结合上面两个问题,看下图:

不难看出,原来所有面积为1的方格被变成面积为 sqrt(2)*sqrt(5)*cos(a),结合几何知识和三角函数,计算出面积为3,上图中的 c 就等于3,计算过程如下,或者简单的方法,分块计算再相加也行:

实际上,这个值就是行列式的值,想想上面变换是一个怎样的2*2矩阵,它的值是3吗?

不可否认的是,如果行列式的值代表这个空间基向量围成的大小(可以是面积,可以是体积),我们再学习行列式的时候就知道,这个值可正可负,也可以为0,那么这些怎么在空间中体现出来的?为零比较好理解,因为之前提到了降维,两个基向量共线,那么围成的面积必定为0,下面看看为负是怎样的:

实际上,看空间变化就看出来了,负值代表了空间翻转了,原来的 i 在 j 的右边,现在反过来再左边了,而且这个变换过程经过了0,是一个由正向负变换的过程,在三维空间下,这个过程体现为右右手直角坐标系变为左手直角坐标系的过程。

在三维上,我们观察的就是由 i,j,k 三个基向量围成的体积,如下:

当变换到一个平面的时候,体积就被压缩到0了,再继续变换,必然导致坐标系变为左手直角坐标系,此时,行列式计算出来的结果就变为负值了。

对于三维的行列式的值的计算如下:他在空间中也可以体现出来,但是不方便看。

矩阵用途:

目前我们已经体会到,矩阵可以用来描述空间变换,甚至更高纬度的空间变换,此外,在初中我们学到过“n元一次线性方程中”,之所以叫线性方程组,因为它本身就可以看做是线性变换,甚至可以看成空间中向量的变换,如下图:

这可以看做,在上图“系数”这个变换中,某个三维向量变化成了【-3,0,2】这个向量,求原始向量。同样的,在二维也是一样。我们不妨想想,如果我们知道另一个空间变换,与上面“系数”所指的这个变换是一个反向过程,那么这个变换是不是可以将【-3,0,2】这个向量变回到【x,y,z】向量,这个变换称为“逆变换”,在线性代数中称为“逆矩阵”。如下图是二维的逆变换举例:

 

逆矩阵:

在之前的讲解中,或多或少提到过逆矩阵,逆矩阵就是代表空间变换过程的逆过程,逆矩阵的存在也正是因为这个两个变换过程是反向的,经过这两个变换,必然回到原来的状态,相当于什么也没做。所以A*pow(A,-1)必定等于单位矩阵,即原始的坐标系。

所以,求上面的xyz三个值,实际上,我们可以求原来变换的逆变换,这个逆变换乘以原来结果的那个向量,得到的就是xyz三个标量指的向量。其实也就是xyz三个值。

但是逆矩阵存在的要求是行列式的值不为0,即这个变换不会导致降维,如果降维了,就不存在逆变换,我们也没有办法将一条直线解压成二维空间,这或许就是刘慈欣《三体中》提到的,如果一种生物能在更低的纬度生存,他就不怕降维打击,而且提到降维打击不可逆,宇宙将降到0维,回到原点

对于上面的降维,线性代数中有一个比较学术化的术语称为“秩”当一个变换能将当前维度(3*3的变换,当前维度就是3维,类推)降到1维,那么这个变换的秩为1,如果变道2维,这个矩阵的秩就是2。秩代表着变换后的维度。所以可以得出结论,一个矩阵的秩不能能大于这个矩阵的维度。因为不能升维,只能降维

列空间与零空间:

对于满秩的变换,变换后在0向量的向量必定只有0向量,对于降维的变换就不一样的,如图:

上面二维变换,存在一条线被压缩到0向量,这个线上的任意向量变换后都在0向量。 

上面三维变换,也存在一条线被压缩到0向量,因为他的维度直降了1,如果维度降2呢(此时秩为1):

可以看都,有一个平面都被压缩到原点了。

在线性代数中,一个变换的零空间实际就是这些被压缩到0向量的向量的集合,也就是上面的直线与平面。零空间又名“核”。对于线性方程组,零空间这个集合实际上就是其解的集合,所以不降维,有一个解,降维则有无数解,因为有一个(降一维)未知数无用,我们可以任意给值。

我们理解了零空间,就是变换后等于0向量的向量集合,那么列空间就是其互补的部分,变换后的张成空间就是其列空间。在线性代数中定义为所有列张成的空间为列空间,实际是一个意思。

 

非方阵:

非方阵,例如,3*2的方阵,在线性代数中,我们知道,他可以乘以一个二维向量,得到一个三维向量,实际上,3*2的方阵是可以增加纬度的。值得一提的是,输入的二维向量和输出的三维向量是完全不同的。实际上,它是将二维的 i j 向量强行放在三维中,而且放入后,本质还是一个平面,只不过这个平面所有的向量都是三维向量。

但这个3*2的矩阵任然是满秩的,其张成空间是三维中的一个平面(或者说将二维平面映射到三维空间中),所以本质还是二维的。

类似的,还有2*3的方阵,在线性代数中,输入为三维向量,输出为二维向量,恰巧,这个在实际生活中还是有用途的,例如,机械设计行业的轴测图,我们将三维的物体反映到纸上,其方阵为:

当然啦,你也可以认为这个矩阵是这样的:

想必搞过CAD或者其他三维设计的朋友应该熟悉把。

根据以上,还可以推理将二维压缩到一维上,就是一个1*2的矩阵,这看起来就比较奇怪,脑补下吧。

参考资料:

3Blue1Brown行列式

3Blue1Brown逆矩阵、列空间与零空间

3Blue1Brown非方阵

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值