前言
一个模型部署上线之前,我们要进行更新迭代,如何对新老模型做一个效果对比分析呢?下面将介绍几个常用的方法
方法一:
常用的模型评估指标,如:ROC、AUC、KS、Gini值越大,区分度越高,模型效果越好;RMSE,越小模型越好;
方法二:简单易懂可解释性强法
将建模样本、test样本或者OOT(out of time)数据,根据模型评分大小顺序排序,切分成20等分,计算每组的标签客户占比,如下图1:
新模型明显在最后2个等级对坏客户的区分度较为明显,如果我们将通过率设定在90%,在19、20两个等级上坏客户区分度上提升2个百分点以上;将分组逾期率化成2条lift曲线(下图2),明显新模型相对平滑,而且在19、20等分上新模型斜率高于老模型,证明新模型区分度好于老模型,可以进行更新迭代。
20份切分参考:https://blog.csdn.net/qq_32123787/article/details/95196322
图1:
图2: