大数据风控---信用模型新老模型对比

本文探讨了在模型更新迭代前,如何对比新老信用模型的效果。介绍了通过ROC、AUC、KS、Gini等指标以及通过排序分组分析方法,展示新模型在坏客户区分度上的优势,证明新模型的优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

一个模型部署上线之前,我们要进行更新迭代,如何对新老模型做一个效果对比分析呢?下面将介绍几个常用的方法

方法一:

常用的模型评估指标,如:ROC、AUC、KS、Gini值越大,区分度越高,模型效果越好;RMSE,越小模型越好;

方法二:简单易懂可解释性强法

将建模样本、test样本或者OOT(out of time)数据,根据模型评分大小顺序排序,切分成20等分,计算每组的标签客户占比,如下图1:

新模型明显在最后2个等级对坏客户的区分度较为明显,如果我们将通过率设定在90%,在19、20两个等级上坏客户区分度上提升2个百分点以上;将分组逾期率化成2条lift曲线(下图2),明显新模型相对平滑,而且在19、20等分上新模型斜率高于老模型,证明新模型区分度好于老模型,可以进行更新迭代。

20份切分参考:https://blog.csdn.net/qq_32123787/article/details/95196322

图1:

图2:

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值