信用模型
Bonus_F
To move the world with data
展开
-
Pyhon轻松实现大数据风控模型开发-toad库
前言同业小伙伴都知道信贷风控界有一个库叫做Scorecardpy,作者是谢士晨博士,就不在赘述。今天为读者介绍另一个同样用于开发评分卡的标标准化评分卡建模模块---toad库:toad是由厚本金融风控团队内部孵化,后开源并坚持维护的标准化评分卡开发库。其功能全面、性能稳健、运行速度快、问题反馈后维护迅速、深受同行喜爱。toad库可实现标准化的信用评分开发,极大简化我们的建模构建和缩短建模周期,只介绍toad库做评分卡模型框架,详细内容请拿数据自己模拟调试,因为作者也比较懒。#!/usr/bi原创 2021-03-11 10:47:46 · 2528 阅读 · 0 评论 -
大数据风控---信用模型新老模型对比
前言一个模型部署上线之前,我们要进行更新迭代,如何对新老模型做一个效果对比分析呢?下面将介绍几个常用的方法方法一:常用的模型评估指标,如:ROC、AUC、KS、Gini值越大,区分度越高,模型效果越好;RMSE,越小模型越好;方法二:简单易懂可解释性强法将建模样本、test样本或者OOT(out of time)数据,根据模型评分大小顺序排序,切分成20等分,计算每组的标签客户...原创 2019-07-18 14:08:58 · 1054 阅读 · 0 评论 -
R 语言快速构建信用评分卡模型---scorecard包
前言R 语言快速构建机器学习,基于某大佬的scorecard包。# github主页- R版: http://github.com/shichenxie/scorecard# 加载[data.table](http://r-datatable.com)与scorecard包library(data.table) # 一个超高性能的数据处理包library(scorec...转载 2019-07-03 16:57:00 · 3834 阅读 · 1 评论 -
R语言机器学习建模标准流程
前沿统计学习是机器学习的基础,机器学习的方法代表了统计的最新发展,二则都是包含于数据科学之中;传统的统计模型大多对数据有一定的要求或者假设,模型本色也有比较明确的数学形式,模型的优劣主要依据对数据的分布假定得到的检验来判断;真实世界的数据分布做任何假设,因为更加的抽象和充满不确定性,高度非线性,难以用有限的数学公式来描述。机器学习对数据没有任何假定,产生的结果用交叉验证的方法来判断,摆脱了假设...原创 2019-07-01 15:05:06 · 3405 阅读 · 0 评论 -
R语言建模---Home Credit Default Risk
前言这是kaggle上关于Credit Risk的一个建模流程,其中非常有重要参考价值的点在于其衍生变量构造这个板块,值得我们借鉴。#数据下载地址:https://www.kaggle.com/c/home-credit-default-risk/data###########建模流程#############加载需要使用的包library(tidyverse)librar...转载 2019-07-02 10:25:03 · 1219 阅读 · 2 评论