【大模型从入门到精通11】openAI API 提示链的力量2


在这里插入图片描述

提示链的力量:阅读和处理JSON字符串

当处理复杂的工作流程时,通常会以JSON格式传递数据。以下示例演示了如何将JSON字符串转换回Python对象以进行进一步处理。

import json

# 函数用于将JSON字符串转换为Python列表
def json_string_to_python_list(json_string):
    if json_string is None:
        return None
    try:
        # 确保正确的JSON格式,将单引号替换为双引号
        json_string = json_string.replace("'", "\"")
        return json.loads(json_string)
    except json.JSONDecodeError:
        print("错误:无效的JSON字符串")
        return None

# 示例JSON字符串(替换为实际模型输出)
json_input = "[{'category': 'Smartphones and Accessories', 'products': ['SmartX ProPhone']}]"

# 转换并打印Python列表
python_list = json_string_to_python_list(json_input)
print(python_list)

基于产品信息生成用户响应

最后,在获取必要的产品信息后,是时候根据用户查询生成响应了。这一过程涉及将检索到的数据格式化为全面且易于用户理解的格式。

# 函数用于根据产品数据生成响应字符串
def generate_response_from_data(product_data_list):
    response_string = ""
    if product_data_list is None:
        return response_string
    for data in product_data_list:
        # 处理每个产品或类别...
        response_string += json.dumps(data, indent=4) + "\n"
    return response_string

# 系统消息用于回应用户查询
response_instruction = """
您是一位客服助理。用简洁的回答回复,并在必要时提出跟进问题。
"""

# 根据产品信息生成响应
final_response = generate_response_from_data(python_list)
print(final_response)

综合性的客户服务互动

Alex首先询问有关摄影产品的信息,随后遇到了最近购买的产品的问题,询问保修覆盖范围,并收到了配件推荐。

# 定义处理客户服务查询的系统指令
system_instruction = """
您将收到客户服务查询。查询将以 '####' 进行分隔。输出一个Python对象列表,每个对象代表查询中提到的产品或类别。
"""

# Alex最初的关于产品的询问
user_query_1 = "#### 我有兴趣升级我的摄影设备。能告诉我最新的DSLR相机及其兼容配件吗?####"

# 处理初次询问
message_sequence_1 = [
    {'role': 'system', 'content': system_instruction},
    {'role': 'user', 'content': user_query_1},
]
response_1 = retrieve_model_response(message_sequence_1)
print("产品询问响应:", response_1)

# Alex遇到新相机的问题
troubleshooting_query = "#### 我刚买了您推荐的FotoSnap DSLR相机,但我无法将其与智能手机连接。我该怎么做呢?####"

# 处理故障排除请求
system_instruction_troubleshooting = "针对客户的问题提供逐步的故障排除建议。"
message_sequence_2 = [
    {'role': 'system', 'content': system_instruction_troubleshooting},
    {'role': 'user', 'content': troubleshooting_query},
]
response_2 = retrieve_model_response(message_sequence_2)
print("故障排除响应:", response_2)

# Alex询问新相机的保修
follow_up_query = "#### 另外,请澄清FotoSnap DSLR相机的保修覆盖范围是什么?####"

# 处理保修询问
system_instruction_follow_up = "提供有关产品的详细保修覆盖信息。"
message_sequence_3 = [
    {'role': 'system', 'content': system_instruction_follow_up},
    {'role': 'user', 'content': follow_up_query},
]
response_3 = retrieve_model_response(message_sequence_3)
print("保修信息响应:", response_3)

# 系统基于Alex的兴趣提供额外的帮助
additional_assistance_query = "#### 鉴于您对摄影的兴趣,您想要有关与FotoSnap DSLR相机兼容的镜头和三脚架的推荐吗?####"

# 处理额外帮助提议
system_instruction_additional_assistance = "根据用户现有的产品提供配件推荐。"
message_sequence_4 = [
    {'role': 'system', 'content': system_instruction_additional_assistance},
    {'role': 'user', 'content': additional_assistance_query},
]
response_4 = retrieve_model_response(message_sequence_4)
print("额外帮助响应:", response_4)

这个示例说明了一个连贯且现实的客户与客户服务AI之间的互动,无缝地过渡到客户参与的各种阶段。从最初的产品询问到故障排除、保修澄清和个人化推荐,每一步都逻辑相连,展示了如何利用GPT模型来创造全面且令人满意的客户服务体验。

结论

本章节已经引导您通过一个高级工作流程来处理用户查询、检索详细的产品信息,并生成有信息量的响应。通过有效地组织代码和数据,您可以构建能够轻松处理复杂任务的强大系统。记得要不断地测试和完善您的方法以提高准确性和用户满意度。

为了创建一个单一而逻辑一致的例子,我们将模拟一个名叫Alex的顾客与客户服务AI的互动。这个互动将涵盖产品询问、故障排除、保修问题以及额外的帮助建议,所有这些都围绕着Alex对摄影和电子产品的兴趣。

理论问题
  • 什么是提示链,它与使用单一提示处理复杂任务有何不同?
    • 提示链涉及将复杂任务分解成一系列相互连接的简单提示,每个提示处理特定的子任务;而单一提示方法试图一次性解决整个复杂查询。
  • 提供两个类比来帮助阐明提示链的概念。描述这些类比与AI中的提示链过程的关系。
    • 烹饪一顿饭:将一次性烹饪复杂菜肴与分阶段准备进行比较。后者方法可以最小化错误,并确保每个组成部分都能完美烹制。
    • 软件开发:将这一概念与编写模块化代码相比处理意大利面条式的代码进行关联。模块化代码通过明确定义依赖关系和职责简化了调试和维护过程。
  • 提示链如何增强AI系统中的工作流程管理?
    • 通过在每个步骤保持系统的状态,并根据此状态调整后续行动,提示链允许采用更加结构化的方法来解决问题。
  • 使用提示链在AI应用程序中有哪些成本效率优势?
    • 更长的提示消耗更多的计算资源。通过使用提示链,每次只处理必要的信息,可能减少与语言模型使用相关的运营成本。
  • 提示链如何在执行复杂任务时减少错误?
    • 专注于一次解决一个子任务减少了错误的可能性,并简化了调试过程。
  • 为什么动态信息加载在当前AI的局限性背景下很重要,提示链如何解决这个问题?
    • 提示链促进了在不同阶段选择性地包含相关信息,从而使模型的上下文保持聚焦和可管理。
  • 概述实施提示链的步骤式方法。包括每个步骤的目的。
    • 初始任务分解:将复杂任务分解成较小的、逻辑有序的子任务。
    • 状态管理:设计一个系统来跟踪每个子任务的进度和结果,确保各阶段之间的平滑过渡。
    • 提示设计:为每个子任务创建聚焦的提示,给模型提供足够的信息以便继续处理,同时避免使其过载。
    • 信息检索与处理:实现辅助函数或使用现有工具根据工作流程的要求获取和预处理数据。
    • 动态上下文调整:根据先前子任务的结果动态调整模型的上下文,确保信息处理的相关性和效率。
  • 确定并解释提示链的最佳实践,以确保其有效性和效率。
    • 最小化复杂度:合理使用提示链,避免对足够简单的任务使用单一提示就能处理的情况使用提示链。
    • 确保清晰性:设计每个提示使其尽可能清晰和专注,降低模型误读的风险。
    • 管理上下文:外部跟踪上下文并动态更新模型的上下文,防止信息过载。
    • 优化效率:构建工作流程以最小化计算成本而不牺牲结果质量。
    • 持续测试与完善:定期测试整个链条中的潜在故障,并根据性能完善提示。
  • 在为Python基础AI交互设置环境的示例中,使用了哪些库,以及它们的目的?
    • 使用dotenv库安全地管理环境变量,使用openai库与OpenAI的GPT模型进行交互。
  • 示例中的系统消息如何指导AI模型对用户查询的响应?
    • 系统消息定义了任务结构和期望的响应格式,确保模型按照预定的格式返回结果。
  • 解释产品数据库在检索详细产品信息方面的作用。如何访问产品信息?
    • 产品数据库存储了产品的详细信息。可以通过名称获取产品信息,也可以获取特定类别下的所有产品。
  • 描述在AI工作流程中将JSON字符串转换为Python对象的过程。为什么这种转换是必要的?
    • 将JSON字符串转换为Python对象是为了便于进一步处理。转换过程中需要确保正确的JSON格式,即用双引号代替单引号。
  • 最终步骤——根据产品数据生成用户响应如何改善AI的客户服务互动?
    • 最终步骤将检索到的产品数据格式化为易于理解的响应,提高了客户服务的质量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水木流年追梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值