通过tensorboardx将混淆矩阵可视化显示


# coding: utf-8
import os
import torch
import torchvision.utils as vutils
import numpy as np
import torchvision.models as models
from torchvision import datasets
from tensorboardX import SummaryWriter
import itertools
import matplotlib.pyplot as plt

writer = SummaryWriter(os.path.join("..", "..", "Result", "runs"))


def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    """
    This function prints and plots the confusion matrix.
    Normalization can be applied by setting `normalize=True`.
    """
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')
 
    print(cm)
 
    fig = plt.figure()


    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=45)
    plt.yticks(tick_marks, classes)
 
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")
 
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    return fig

cnf_matrix = np.array([
    [4101, 2, 5, 24, 0],
    [50, 3930, 6, 14, 5],
    [29, 3, 3973, 4, 0],
    [45, 7, 1, 3878, 119],
    [31, 1, 8, 28, 3936],
])
 
class_names = ['Buildings', 'Farmland', 'Greenbelt', 'Wasteland', 'Water']

#调用add_figure将figure放入tensorboardX中显示
writer.add_figure('confusion matrix',figure=plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=False,title='Normalized confusion matrix'),global_step=1)
writer.add_figure('confusion matrix',figure=plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True,title='Normalized confusion matrix'),global_step=1)

writer.close()

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值