推到所需先验知识:
系统的m个微观态都是等概率时,香农熵(信息熵)计算公式:
系统的m个微观态都是等概率时,热力学熵计算公式:(注:k是玻尔兹曼常数)
信息熵和信息的关系:消除信息熵=获取信息
如上图,设想一个热力学熵为S的气罐,里面只有一个气体分子。
若将气罐分成W1个小空间,该分子则有W1个可能位置,分子的每个可能位置都被视为一个微观状态(microstate)。整个气罐有W1个微观状态,因此半个气罐有W2=W1/2个微观状态。如图,则整个气缸的微观状态数为8个,半个气缸的微观状态数为4个。所有微观状态都被视为相同概率。
若将分子位置限制为半个气罐,则气罐的熵S将从起始高熵值变到低熵值
。(注:单位J是焦耳,单位K是开尔文温度)
而该限制行为所缩减的气罐的熵为,不管W1是多少。
乘以温度T后,
就得到了:
改变系统热力学熵所需的最低能量是kTln2焦耳。
而此操作所改变的信息熵是1bit。
也就是说:
改变1bit香农熵会导致kln2J/K热力学熵的改变。
改变1bit香农熵所需的最低能量是kTln2焦耳。
又因为消除信息熵=获取信息,即,改变信息熵等同于改变信息,因此:
写入/删除1bit信息会导致kln2J/K热力学熵的改变,消耗kTln2焦耳能量。
因为传递的信息不得不克服由随机振动造成的噪音干扰,所以消耗的能量无法避免的随温度T的升高而升高。
不管多么高效的设备都遵守以上的转换极限,故称Landauer Limit。