双对数坐标(log-log)下“斜率”“幅值”等概念对应到线性坐标下的实际含义

本文探讨了在双对数坐标系中分析数据时,‘斜率’和‘幅值’的概念。通过数学推导,解释了这些直观特征对应于线性坐标系中的指数和系数,强调了双对数坐标对于揭示数据在不同频率区域的趋势变化的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们取同一组数据(实为一个数据的功率谱),然后分别画出其在线性坐标和双对数坐标下(loglog)下的曲线:
图 线性坐标

图 线性坐标

图 双对数坐标(log-log)

图 双对数坐标(log-log)

一般我们为了更好观察数据特征,特意把数据画在双对数坐标下,然后分析数据的时候我们经常形象的说其在低频区域的“斜率”如何如何,高频区域的“斜率”如何如何,还有其“幅值”大小如何如何。那么这些在双对数坐标下的这种人的直观概念到底是怎么一回事呢?

说是到底去问是怎么一回事,主要是我们观察到了数据在双对数坐标和线性坐标下的特征是不一样的,双对数坐标中的“斜率”还有“幅值”在线性坐标中找不到很直观的对应,那么我们平常所说的对数坐标中的“斜率”和“幅值”到底对应的线性坐标中的什么曲线特征?

首先我们要理清在双对数坐标中,我们所说的“斜率”是没有看坐标轴所说的,其实我们下意识的把坐标轴当成了线性坐标,这个当然和线性代数中向量的基矢有关系,但是我想从更直观的角度去说这件事情。那么我们下意识下所说的“斜率”下的线性坐标对应的是什么呢?仔细观察一下我们会发现,这个线性坐标对应的是双对数坐标横坐标的 1 0 − 4 , 1 0 − 3 , 1 0 − 2 , 1 0 − 1 , 1 0 0 , 1 0 1 , 1 0 2 10^{-4},10^{-3},10^{-2},10^{-1},10^{0},10^{1},10^{2} 104,103,102,101,100,101,102中的指数项,即 − 4 , − 3 , − 2 , − 1 , 0 , 1 , 2 -4,-3,-2,-1,0,1,2 4,3,2,1,0,1,2,然后纵坐标 1 0 − 5 , 1 0 0 , 1 0 5 10^{-5},10^{0},10^{5} 105,100,105,对应的线性坐标是 − 5 , 0 , 5 -5,0,5 5,0,5,他们之间的关系是log的。以10为底的指数实际上为真实数据的值(设为 x r e a l , y r e a l x_{real},y_{real} xreal,yreal,真实线性坐标下的斜率和幅值设为 k r e a l _ l i n e a r , b r e a l _ l i n e a r k_{real\_linear},b_{real\_linear} kreal_linear,breal_linear),而其指数我们可以看成在双对数下的线性坐标(“斜率”意义下的线性坐标,在线性代数中相当于我们替换了矢量的基矢)(设为 x log ⁡ _ l i n e a r , y log ⁡ _ l i n e a r x_{\log\_linear},y_{\log\_linear} xlog_linear,ylog_linear,而“斜率”为 k log ⁡ _ l i n e a r , b log ⁡ _ l i n e a r k_{\log\_linear},b_{\log\_linear} klog_linear,blog_linear)。则上述变量之间的关系可以表示如下:
x log ⁡ _ l i n e a r = log ⁡ ( x r e a l ) y log ⁡ _ l i n e a r = log ⁡ ( y r e a l ) y log ⁡ _ l i n e a r = k log ⁡ _ l i n e a r x log ⁡ _ l i n e a r + b log ⁡ _ l i n e a r ⇒ log ⁡ ( y r e a l ) = k log ⁡ _ l i n e a r log ⁡ ( x r e a l ) + log ⁡ 1 0 b log ⁡ _ l i n e a r ⇒ log ⁡ ( y r e a l ) = log ⁡ ( x r e a l ) k log ⁡ _ l i n e a r + log ⁡ 1 0 b log ⁡ _ l i n e a r ⇒ log ⁡ ( y r e a l ) = log ⁡ ( ( x r e a l ) k log ⁡ _ l i n e a r 1 0 b log ⁡ _ l i n e a r ) ⇒ y r e a l = ( x r e a l ) k log ⁡ _ l i n e a r 1 0 b log ⁡ _ l i n e a r \begin{aligned} x_{\log\_linear}&=\log(x_{real})\\ y_{\log\_linear}&=\log(y_{real})\\ y_{\log\_linear}&=k_{\log\_linear}x_{\log\_linear}+b_{\log\_linear}\\ \Rightarrow \log(y_{real})&=k_{\log\_linear}\log(x_{real})+\log10^{b_{\log\_linear}}\\ \Rightarrow \log(y_{real})&=\log(x_{real})^{k_{\log\_linear}}+\log10^{b_{\log\_linear}}\\ \Rightarrow \log(y_{real})&=\log((x_{real})^{k_{\log\_linear}}10^{b_{\log\_linear}})\\ \Rightarrow y_{real}&=(x_{real})^{k_{\log\_linear}}10^{b_{\log\_linear}} \end{aligned} xlog_linearylog_linearylog_linearlog(yreal)log(yreal)log(yreal)yreal=log(xreal)=log(yreal)=klog_linearxlog_linear+blog_linear=klog_linearlog(xreal)+log10blog_linear=log(xreal)klog_linear+log10blog_linear=log((xreal)klog_linear10blog_linear)=(xreal)klog_linear10blog_linear
通过上述的公式推导,我们可以很清楚的知道,在双对数坐标中我们所直观看到的“斜率( k l o g _ l i n e a r k_{log\_linear} klog_linear)”和“幅值( b l o g _ l i n e a r b_{log\_linear} blog_linear)”对应真线性坐标下的指数和系数(“真实斜率”)。

这样我们就得到了双对数坐标下“斜率”和“幅值”的所谓实际含义。

### 如何从传递函数的Bode图中计算 对于线性时不变(LTI)系统,Bode图是一种常用的工具来表示系统的频率响应特性。它由两个部分组成:一个是增益()对数坐标图,另一个是相位角变化图。 在Bode图中的度是以分贝(dB)为单位给出的,可以通过以下公式转换成实际: \[ A(\omega)=20\log _{10}|G(j\omega)| \] 其中 \( G(s) \) 是系统的传递函数,在这里用 \( j\omega \) 替换了复变量 \( s \),\( |G(j\omega)| \) 表示传递函数在不同频率下的模频特性[^1]。 要从Bode图读取特定频率处的,可以按照下列方法操作: 假设给定一个频率点 ω, 查看对应的纵轴上的dB数 y_db,则原始可通过反向运算获得: \[ |G(j\omega)|=10^{y_{db}/20} \] 例如,如果某频率下测得的 dB -6 dB ,那么相应的就是: \[ |G(j\ω)|=10^{-6/20}=0.5 \] 这表明在这个频率上信号强度衰减了一半。 为了更直观理解这一过程,考虑一个简单的例子——一阶低通滤波器,其传递函数形式通常写作: \[ H(s)=\frac{\omega_c}{s+\omega_c} \] 绘制此传递函数的Bode图会显示一条斜率-20dB/decade 的直线,并且转折发生在截止频率 \( \omega_c \)[^3]。通过观察这条曲线就可以很容易地估计任何指定频率范围内的相对增益变化情况。 ```matlab % MATLAB代码用于绘制上述简单的一阶低通滤波器的Bode图并提取某个频率点的 wc = 1; % 设置截止频率为1 rad/s sys = tf([wc], [1 wc]); % 创建传递函数对象 figure; bode(sys); hold on; % 计算并标注某一具体频率处的 w_test = logspace(-1, 1, 100); [mag, phase] = bode(sys,w_test); % 找到最接近测试频率的位置 idx = find(w_test >= 0.5 & w_test <= 1.5 ,1,'first'); text(w_test(idx), mag(:, idx)+2,['|H(' num2str(w_test(idx)) ')|=' num2str(mag(:, idx)) ' dB'], ... 'VerticalAlignment','bottom',... 'HorizontalAlignment','right'); grid on; title('One-Pole Lowpass Filter Frequency Response') xlabel('\omega (rad/sec)') ylabel('|H(j\omega)| Magnitude (dB)'); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值