常见的全概率公式:
P
(
B
)
=
∑
i
=
1
n
P
(
A
i
)
P
(
B
∣
A
i
)
P\left(B\right)= \sum^{n}_{i=1} P(A_{i})P(B|A_{i})
P(B)=i=1∑nP(Ai)P(B∣Ai)
当公式左端为条件概率时会有相类似的全概率公式:
P
(
C
∣
A
)
=
∑
B
∈
I
P
(
B
∣
A
)
P
(
C
∣
B
,
A
)
=
∑
B
∈
I
P
(
B
,
A
)
P
(
A
)
P
(
C
,
B
,
A
)
P
(
A
,
B
)
=
∑
B
∈
I
P
(
C
,
B
,
A
)
P
(
A
)
=
∑
B
∈
I
P
(
C
,
B
∣
A
)
=
P
(
C
∣
A
)
\begin{aligned} P(C|A) & =\sum_{B\in I}P(B|A)P(C|B,A)\\ &=\sum_{B\in I}\frac{P(B,A)}{P(A)}\frac{P(C,B,A)}{P(A,B)}\\ &=\sum_{B\in I}\frac{P(C,B,A)}{P(A)}\\ &=\sum_{B\in I}P(C,B|A)\\ &=P(C|A) \end{aligned}
P(C∣A)=B∈I∑P(B∣A)P(C∣B,A)=B∈I∑P(A)P(B,A)P(A,B)P(C,B,A)=B∈I∑P(A)P(C,B,A)=B∈I∑P(C,B∣A)=P(C∣A)
条件概率下的全概率公式
最新推荐文章于 2025-04-07 08:39:27 发布