数学建模拟合算法Matlab实现代码

与插值问题不同,在拟合问题中不需要曲线一定经过给定的点。拟合问题的目标是寻求一个函数(曲线),使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化损失函数)。
插值算法中,得到的多项式f(x)要经过所有样本点。但是如果样本点太多,那么这个多项式次数过高,会造成龙格现象。
尽管我们可以选择分段的方法避免这种现象,但是更多时候我们更倾向于得到一个确定的曲线,尽管这条曲线不能经过每一个样本点,但只要保证误差足够小即可。
 

clear;clc
load  data1
plot(x,y,'o')
% 给x和y轴加上标签
xlabel('x的值')
ylabel('y的值')
n = size(x,1);
k = (n*sum(x.*y)-sum(x)*sum(y))/(n*sum(x.*x)-sum(x)*sum(x))
b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/(n*sum(x.*x)-sum(x)*sum(x))
hold on % 继续在之前的图形上来画图形
grid on % 显示网格线

% % 画出y=kx+b的函数图像 plot(x,y)
% % 传统的画法:模拟生成x和y的序列,比如要画出[0,5]上的图形
% x = 0: 0.1 :5  % 间隔设置的越小画出来的图形越准确
% y = k * x + b  % k和b都是已知值
% plot(x,y,'-')

f=@(x) k*x+b;
fplot(f,[min(x)-1,max(x)+1]);
legend('样本数据','拟合函数','location','SouthEast')


% 匿名函数的基本用法。
% handle = @(arglist) anonymous_function
% 其中handle为调用匿名函数时使用的名字。
% arglist为匿名函数的输入参数,可以是一个,也可以是多个,用逗号分隔。
% anonymous_function为匿名函数的表达式。
% 举个小例子
% % >> z=@(x,y) x^2+y^2; 
% % >> z(1,2) 
% % ans =  5
% fplot函数可用于画出匿名函数的图形。
% fplot(f,xinterval) 将在指定区间绘图。将区间指定为 [xmin xmax] 形式的二元素向量。
y_hat = k*x+b; % y的拟合值
SSR = sum((y_hat-mean(y)).^2)  % 回归平方和
SSE = sum((y_hat-y).^2) % 误差平方和
SST = sum((y-mean(y)).^2) % 总体平方和
SST-SSE-SSR
R_2 = SSR / SST


% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭
% % 更多优质数模资料可在我的微店获取:https://weidian.com/?userid=1372657210
% % 数学建模讨论群获取地址:http://note.youdao.com/noteshare?id=4997251d8219a45d56631e412b1e9392

 

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于数学建模中的模拟退火算法,您可以使用MATLAB进行实现。以下是一个简单的示例代码: ```matlab % 定义目标函数 function y = objectiveFunction(x) % 这里是您定义的目标函数 y = x^2; end % 模拟退火算法 function [x_best, f_best] = simulatedAnnealing() % 初始解 x = rand()*10; % 生成一个0到10之间的随机数 % 目标函数值 f = objectiveFunction(x); % 最佳解和最佳目标函数值的初始值 x_best = x; f_best = f; % 控制参数 T = 100; % 初始温度 Tmin = 1e-5; % 终止温度 alpha = 0.95; % 温度衰减系数 % 迭代搜索 while T > Tmin % 生成新解 x_new = x + randn(); f_new = objectiveFunction(x_new); % 计算目标函数差值 delta_f = f_new - f; % 判断是否接受新解 if delta_f < 0 || exp(-delta_f / T) > rand() x = x_new; f = f_new; end % 更新最佳解和最佳目标函数值 if f < f_best x_best = x; f_best = f; end % 降低温度 T = T * alpha; end end % 调用模拟退火算法 [x_best, f_best] = simulatedAnnealing(); % 打印结果 disp(['最优解 x = ', num2str(x_best)]); disp(['最优目标函数值 f = ', num2str(f_best)]); ``` 您可以根据自己的具体问题和目标函数,在`objectiveFunction`函数中定义您的目标函数。在`simulatedAnnealing`函数中,您可以根据需要调整控制参数。最后,在主程序中调用`simulatedAnnealing`函数,并打印出最优解和最优目标函数值。 希望以上代码能够帮助到您!如果有任何问题,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值