《凸优化》学习笔记2-凸集(第二章)

本文详细介绍了凸集的概念,从仿射集出发,涵盖凸集、凸锥,列举了如超平面、半空间、球、椭球、范数球和正半定锥等重要凸集,并讨论了保凸运算,包括交集、仿射函数、透视函数和线性分式函数。
摘要由CSDN通过智能技术生成

仿射集和凸集

仿射集

经过 x 1 x_1 x1 x 2 x_2 x2直线表示为:
x = θ x 1 + ( 1 − θ ) x 2 ,   θ ∈ R . x=\theta x_1 + (1-\theta) x_2,~\theta \in \mathbf{R}. x=θx1+(1θ)x2, θR.

如果经过集合 C C C中任意两点的直线仍然在集合 C C C中,那么称集合 C C C仿射的,即对于任意 x 1 x_1 x1 x 2 ∈ C x_2 \in C x2C θ ∈ R \theta \in \mathbf{R} θR,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1-\theta) x_2 \in C θx1+(1θ)x2C

线性方程组 A x = b Ax=b Ax=b的解集是一个仿射集;反之,每个仿射集都可以表示为线性方程组的解集。

凸集

x 1 x_1 x1 x 2 x_2 x2之间的线段表示为:
x = θ x 1 + ( 1 − θ ) x 2 ,   0 ≤ θ ≤ 1. x=\theta x_1 + (1-\theta) x_2,~0 \leq \theta \leq 1. x=θx1+(1θ)x2, 0θ1.
如果集合 C C C中任意两点之间的线段仍然在集合 C C C中,那么称集合 C C C的,即对于任意 x 1 x_1 x1 x 2 ∈ C x_2 \in C x2C 0 ≤ θ ≤ 1 0 \leq \theta \leq 1 0θ1,有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1-\theta) x_2 \in C θx1+(1θ)x2C。仿射集是凸集的一个特例。

示例(一个凸集,一个非凸集):

凸锥

如果对于任意 x 1 x_1 x1 x 2 ∈ C x_2 \in C x2C θ 1 ≥ 0 \theta_1\geq0 θ10 θ 2 ≥ 0 \theta_2 \geq0 θ20, 都有 θ x 1 + ( 1 − θ ) x 2 ∈ C \theta x_1 + (1-\theta) x_2 \in C θx1+(1θ)x2C,我们将集合 C C C称为凸锥

一些重要的凸集

一些简单的凸集:

  • 空集 ∅ \empty 、任意点 { x 0 } \{x_0\} { x0}、全空间 R n \mathbf{R}^n Rn(仿射集);
  • 任意直线(仿射集);
  • 任意线段;
  • 任意射线 { x 0 + θ v ∣ θ ≥ 0 } \{x_0+\theta v|\theta\geq0\} { </
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值