Deep learning花书学习笔记(一):特征值分解+Moore-Penrose伪逆+迹运算+主成分分析

本人由于在导师分配的论文阅读过程中,发现了深度学习的数学原理的重要性。之前一直吃灰的花书要重新捡起来了。。。

奇异值分解:

1. 奇异值分解的定义:

A = U D V T A=UDV^{T} A=UDVT
其中 A A A m ∗ n m*n mn的矩阵(未必为方阵), U U U m ∗ m m*m mm的正交矩阵, D D D m ∗ n m*n mn的矩阵, V V V是一个 n ∗ n n*n nn的正交矩阵。

2. 奇异值分解求解的方法:

求解 A A T AA^{T} AAT的特征值对应的特征向量为 U U U的列向量,求解 A T A A^{T}A ATA的特征值对应的特征向量为 V V V的列向量, D D D的对角线上的元素为 A A A的奇异值,对应 A A T AA^{T} AAT A T A A^{T}A ATA的特征值。

3. 奇异值分解的应用:

其中一个应用为拓展矩阵求逆到一般的矩阵上( m ≠ n m\neq n m=n)。

Moore-Penrose伪逆:

这个问题在机器学习在各领域应用的paper上大都会遇到,本人最近在找偏微分方程的一篇paper上遇到了矩阵求逆(非方阵),一直不懂如何求(包括在paper中遇到的病态条件和条件数),而花书第二章就将到了这个,再次证明了花书的意义。。。
A x = b Ax=b Ax=b
如果 A A A为方阵且可逆 x = A − 1 b x=A^{-1}b x=A1b
如果 A A A不为方阵或者 A A A为方阵但不可逆,我们如何表示 x x x的解那?
花书首先给出伪逆的定义为:
lim ⁡ a → 0 ( A T A + a I ) − 1 A T \lim_{a\rightarrow0}(A^TA+aI)^{-1}A^T a0lim(ATA+aI)1AT
我们由定义可以发现上式与带有 L 2 L_2 L2正则项的最小二乘法的解形式是一样的,实际上,伪逆就是统计学家在解决最小二乘法问题时对 A T A A^TA ATA不可求逆,导致问题无法求解时而引入的概念。
考虑一般化的矩阵: A m ∗ n ( m ! = n ) A_{m*n}(m!=n) Amn(m!=n),设矩阵的秩为r,讨论以下几种情况。

  1. 列满秩: m > n 且 r = n m> n且r=n m>nr=n A x = 0 Ax=0 Ax=0只有0解。此时 A T A n ∗ n A^TA_{n*n} ATAnn为方阵并且满秩( A A T AA^T AAT未满秩),为非奇异矩阵。
    左逆:我们定义 ( A T A ) − 1 A T (A^TA)^{-1}A^T (ATA)1AT A A A的左逆,因为:
    ( A T A ) − 1 A T A = I (A^TA)^{-1}A^TA=I (A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值