TensorFlow笔记(7) 多神经元分类

本文通过TensorFlow实现多神经元分类,解决MNIST手写数字识别问题。介绍了数据读取、构建模型、训练与评估模型的过程,展示了如何通过增加神经元提升模型性能,最终在验证集上达到97.6%的准确率。
摘要由CSDN通过智能技术生成

1. 多神经元分类问题

假如对单神经元的模型92.28%的准确率还不满意
那么根据深度学习笔记(6) 实践层面(一)知道出现欠拟合可以进行高次多项式回归
那么对于神经网络来说,可以添加多一些神经元
在这里插入图片描述
那么,还是以MNIST手写数字识别问题为例
以下有部分内容与TensorFlow笔记(6) 单神经元分类 重复,如数据读取等可选择性跳过


2. 数据读取

利用网上的 MNIST 数据集 获取数据集压缩文件(切勿解压):

压缩文件 说明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氢键H-H

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值