文章目录
- 资料分析
- 一、基础概念、学会列式
- 二、列式训练、迅速反应
- 三、结构阅读、快速找数
- 四、速算技巧、唯快独尊
- 五、速算训练、一览无余
- (一)加减类
- (二) A B A \over B BA的计算与比较
- (三) A 1 ± A 2 ± A 3 ± . . . B 1 ± B 2 ± B 3 ± . . . A_1 \pm A_2 \pm A_3 \pm ... \over B_1 \pm B_2 \pm B_3 \pm ... B1±B2±B3±...A1±A2±A3±...
- (四)A×B或A×(1+r)
- (五) r 1 + r 2 + r 1 × r 2 r_1+r_2+r_1×r_2 r1+r2+r1×r2或 1 + r 1 + r 2 + r 1 × r 2 1+r_1+r_2+r_1×r_2 1+r1+r2+r1×r2
- (六) A 1 + r A \over 1+r 1+rA
- (七) A r 1 + r Ar \over 1+r 1+rAr
- (八) A × B C A×B \over C CA×B或 A ÷ B C A \div B \over C CA÷B
- (九) A B ÷ C D {A \over B} \div {C \over D} BA÷DC
- (十) A B × 1 + b 1 + a {A \over B} × {1+b \over 1+a} BA×1+a1+b
- (十一) A B × a − b 1 + a {A \over B} × {a-b \over 1+a} BA×1+aa−b
- (十二) a − b 1 + b a-b \over 1+b 1+ba−b
- (十三) A 1 ± a × B 1 ± b {A \over 1 \pm a} × {B \over 1 \pm b} 1±aA×1±bB
- 六、计算型
- 七、比较型
- 八、年均增长相关
- 九、综合分析之策略
资料分析
本题型相对得分率高、方法技巧性强,但难度近年也略有攀升
一、基础概念、学会列式
(一)现期量、基期量
资料中作为对比参照的时期称为基期,而相对于基期的时期称为现期。
描述基期的具体数值称之为基期量,描述现期的具体数值称之为现期量。
公式
现期量
=
基期量
×
(
1
+
增长率
)
现期量=基期量×(1+增长率)
现期量=基期量×(1+增长率)
基期量
=
现期量
1
+
增长率
基期量={现期量 \over 1+增长率}
基期量=1+增长率现期量
(二)增长量、增长率
增长量是指社会经济现象在一定时期内增长(或减少)的绝对量。
增长率是指现期量与基期量之间进行比较的一种相对指标。
公式
增长量
=
现期量
−
基期量
增长量=现期量-基期量
增长量=现期量−基期量
增长率
=
增长量
基期量
=
现期量
−
基期量
基期量
=
增长量
现期量
−
增长量
增长率={增长量 \over 基期量}={现期量-基期量 \over 基期量}={增长量 \over 现期量-增长量}
增长率=基期量增长量=基期量现期量−基期量=现期量−增长量增长量
衍生公式:
增长量
=
基期量
×
增长率
=
现期量
1
+
增长率
×
增长率
增长量=基期量×增长率={现期量 \over 1+增长率}×增长率
增长量=基期量×增长率=1+增长率现期量×增长率
- 增长率在报表中还被称为增速或增幅。
- 一般情况增幅小于100%时,使用百分数表示,超过100%时,使用倍数来表示。
(三)变化幅度、涨跌幅度
变化幅度、涨跌幅度是指变化率的绝对值。
(四)同比与环比
同比:与历史同期相比;同比实际是指与去年的同一时期相比。
环比:现在统计周期与上一个统计周期相比;指“与紧紧相邻的统计周期相比”
(五)发展速度
发展速度是反映某种社会现象发展程度的相对指标,它是现期发展水平与基期发展水平之比。
公式
发展速度 = 现期量 基期量 = 增长率 + 1 发展速度={现期量 \over 基期量}=增长率+1 发展速度=基期量现期量=增长率+1
(六)年均增长量
公式
年均增长量 = 末期量 − 初期量 相差年数 年均增长量={末期量-初期量 \over 相差年数} 年均增长量=相差年数末期量−初期量
(七)年均增长率
公式
初期量
×
(
1
+
年均增长率
)
n
=
末期量
初期量×(1+年均增长率)^n=末期量
初期量×(1+年均增长率)n=末期量
(
1
+
年均增长率
)
n
=
末期量
初期量
(1+年均增长率)^n={末期量 \over 初期量}
(1+年均增长率)n=初期量末期量
(八)拉动增长率
公式
如果
B
B
B是
A
A
A的一部分,
B
B
B拉动
A
A
A增长了
x
x
x%,那么
初期量
×
(
1
+
年均增长率
)
n
=
末期量
初期量×(1+年均增长率)^n=末期量
初期量×(1+年均增长率)n=末期量
拉动增长率:
x
%
=
B
的增长量
A
的基期量
拉动增长率:x\%={B的增长量 \over A的基期量}
拉动增长率:x%=A的基期量B的增长量
(九)增长贡献率
公式
增长贡献率 = 部分增长量 整体增长量 增长贡献率={部分增长量 \over 整体增长量} 增长贡献率=整体增长量部分增长量
(十)百分数与百分点
百分数:
n
%
n\%
n%,一般由
量
A
量
B
量A \over 量B
量B量A得到
百分点:百分数加减运算的单位,即“个百分点”
(十一)比重
比重即部分在整体中所占的比例。
比重
=
部分
整体
比重=部分 \over 整体
整体比重=部分
(十二)平均数
平均数是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数所得的商。
平均数
=
总数
总个数
平均数={总数 \over 总个数}
平均数=总个数总数
(十三)成数与翻番
成数:表示一个数是另一个数的十分之几,几成就相当于十分之几
翻番:翻一番为原来的2倍;翻两番为原来的4倍;依此类推,翻
n
n
n番为原来的
2
n
2^n
2n倍
(十四)国内生产总值与国民生产总值
- 国内生产总值(Gross Domestic Product,简称GDP)是指在一定时期内(一个季度或一年),一个国家或地区的经济中所生产出的全部最终产品和劳务的价值,常被公认为衡量国家经济状况的最佳指标。它不但可反映一个国家的经济表现,还可以反映一国的国力与财富。
- 国民生产总值是一个国家(或地区)所有常住单位在一定时期(通常为一年)内收入初次分配的最终结果。是一定时期内本国的生产要素所有者所占有的最终产品和服务的总价值。等于国内生产总值加上来自国内外的净要素收入。计算公式为:国民生产总值=国内生产总值+来自国外的净要素收入=国内生产总值+生产税和进口税扣除生产、进口补贴(来自国外的净额)+雇员报酬(来自国外的净额)+财产收入(来自国外的净额)。
区别:
- 国民生产总值(GNP)=国内生产总值(GDP)+来自国外的劳动报酬和财产收入-支付给国外的劳动报酬和财产收入。
- 国外净要素收入=来自国外的劳动报酬和财产收入一支付给国外的劳动报酬和财产收入
- 所以国民生产总值(GNP)则等于国内生产总值(GDP)加上国外净要素收入
(十五)顺差、逆差
- 顺差(active balance):指在国际收支上,在一定时期(如一年、半年、一季、一月)收入大于支出的差额。
- 逆差(negative balance):指在国际收支上,在一定时期(如一年、半年、一季、一月)支出大于收入的差额。
(十六)指数
指数是用来衡量某种要素相对变化的指标量。
一般假定基期为100,其他量和基期相比得出的数值。
注:相应两期实际值的比=相应两期指数的比
资料分析中考察的指数,其本质是一种倍数关系,实际上是百分数去掉了“%”的表现形式。
(十七)恩格尔系数
恩格尔系数:指食品支出总额(生活必需品,非奢侈品)占家庭或个人消费支出总额的百分比例。这个比例越低、一般反映这个地区人民生活水平越高。
一般来说,在其他条件相同的情况下,恩格尔系数较高,作为家庭来说则表明收入较低,作为国家来说则表明该国较穷。反之,恩格尔系数较低,作为家庭来说则表明收入较高,作为国家来说则表明该国较富裕。
(十八)基尼系数
国际上通用的、用以衡量一个国家或地区人民收入差距的常用指标。基尼系数介于0-1之间,越接近0就表明收入分配越是趋向平等,反之趋向于不平等。按照国际一般标准,0.4以上的基尼系数表示收入差距较大,当基尼系数达到0.6以上时,则表示收入差距很大
(十九)五年规划
第一个五年计划:1953-1957
第二个五年计划:1958-1962
第三个五年计划:1966-1970
第四个五年计划:1971-1975
第五个五年计划:1976-1980
第六个五年计划:1981-1985
第七个五年计划:1986-1990
第八个五年计划:1991-1995
第九个五年计划:1996-2000
第十个五年计划:2001-2005
第十一个五年规划:2006-2010
第十二个五年规划:2011-2015
第十三个五年规划:2016-2020
(除1949年10月到1952年底为中国国民经济恢复时期和1963年至1965年为国民经济调整时期)
二、列式训练、迅速反应
练习
三、结构阅读、快速找数
(一)“分段落主题型”文字材料
以主旨句、主旨词为基准,由题目返回材料定位
(二)孤立语段文字材料
以主旨句、主旨词为基准,由题目返回材料定位
(三)表格材料
由横纵标题敲定主题,由题目返回材料定位
(四)柱状图、趋势图材料
由横纵轴敲定主题,由题目返回材料定位(注意单位)
(五)饼图材料
由图例敲定主题,由题目返回材料定位
(六)复合型材料
敲定主题,由题目返回材料定位
(七)网状材料
四、速算技巧、唯快独尊
(一)加减类估算
- 优先考虑尾数法
- 过程中若各数字数量级不同,截位舍相同
- 若选项非常接近,不截位,精确计算
(二)截位直除
选项首位不同,分母从左向右截取两位,第三位四舍五入
选项首位相同,第二位不同,截取前三位,第四位四舍五入
如果选项首两位或三位相同,不截位,精确计算
如果选项量级不同,计算时一定要考虑量级
常见形式
A
B
A \over B
BA型:分子取整,分母截位
A
1
±
A
2
±
.
.
.
±
A
n
B
A_1 \pm A_2 \pm ... \pm A_n \over B
BA1±A2±...±An型:分子分母均截位
A
1
±
A
2
±
.
.
.
±
A
n
B
1
±
B
2
±
.
.
.
±
B
n
A_1 \pm A_2 \pm ... \pm A_n \over B_1 \pm B_2 \pm ... \pm B_n
B1±B2±...±BnA1±A2±...±An型:分子分母均截位
(三)放缩法
对中间结果进行适当的“放大”或“缩小”
常见形式:若A>a>0,且B>b>0,则:A×B>a×B>a×b;
A
b
>
a
b
>
a
B
{A \over b}>{a \over b}>{a \over B}
bA>ba>Ba
(四)特殊分数法
常用于计算:
增长量
=
现期量
1
+
增长率
×
增长率
增长量={现期量 \over 1+增长率}×增长率
增长量=1+增长率现期量×增长率,
部分
=
整体
×
比重
部分=整体×比重
部分=整体×比重等
记住常用的特殊分数值,亦或者记住
n
%
=
1
m
n\%={1 \over m}
n%=m1,则
m
%
=
1
n
m\%={1 \over n}
m%=n1
(五)插值法
特殊值分数的另一种应用,通过插入分数达到简化运算和比较过程的目的
(六)化同法
分子或者分母之间存在明显倍数关系
(七)差分法
其中一个分数的分子和分母都略大于另一个分数时常用
差分数用来替代大分数(分子和分母都较大的分数),小分数与差分数之间大小关系与小分数与大分数之间大小关系相一致
(八)公式法
求基期时化除为乘:
∣
r
∣
<
5
%
|r|<5\%
∣r∣<5%时,
A
1
+
r
≈
A
×
(
1
−
r
)
{A \over 1+r} \approx A×(1-r)
1+rA≈A×(1−r)
间隔增长率:
r
=
r
1
+
r
2
+
r
1
×
r
2
r=r_1+r_2+r_1×r_2
r=r1+r2+r1×r2
五、速算训练、一览无余
(一)加减类
(二) A B A \over B BA的计算与比较
(三) A 1 ± A 2 ± A 3 ± . . . B 1 ± B 2 ± B 3 ± . . . A_1 \pm A_2 \pm A_3 \pm ... \over B_1 \pm B_2 \pm B_3 \pm ... B1±B2±B3±...A1±A2±A3±...
(四)A×B或A×(1+r)
(五) r 1 + r 2 + r 1 × r 2 r_1+r_2+r_1×r_2 r1+r2+r1×r2或 1 + r 1 + r 2 + r 1 × r 2 1+r_1+r_2+r_1×r_2 1+r1+r2+r1×r2
(六) A 1 + r A \over 1+r 1+rA
(七) A r 1 + r Ar \over 1+r 1+rAr
(八) A × B C A×B \over C CA×B或 A ÷ B C A \div B \over C CA÷B
(九) A B ÷ C D {A \over B} \div {C \over D} BA÷DC
(十) A B × 1 + b 1 + a {A \over B} × {1+b \over 1+a} BA×1+a1+b
(十一) A B × a − b 1 + a {A \over B} × {a-b \over 1+a} BA×1+aa−b
(十二) a − b 1 + b a-b \over 1+b 1+ba−b
(十三) A 1 ± a × B 1 ± b {A \over 1 \pm a} × {B \over 1 \pm b} 1±aA×1±bB
六、计算型
(一)基期量
1.基期量计算
2.基期量和差类
(二)现期量
(三)增长量
1.计算增长量、增长率为百分数
2.计算增长量、增长率为倍数
(四)增长率
1.下降幅度
2.百分点,计算增长率 ± \pm ±类
3.给定现期量、基期量求增长率
4.增长倍数
5.整体增速
(五)比重
1.已知部分求整体
2.已知整体求部分
3.现期比重计算
4.比重饼状图类
5.比重与整体×a%比较大小
6.比重差类
7.基期比重计算
8.两期比重比较,升降百分点
(六)平均数
1.现期平均数计算
2.已知平均数,求总数
3.基期平均数
4.平均数的增长率
(七)倍数
1.现期倍数计算
2.超过几倍
3.基期倍数
(八)十字交叉形式类
1.交叉现期占比类
2.交叉现期比例类
3.交叉基期比例类
4.交叉线段法
(九)间隔形式类
1.间隔增长率
2.间隔倍数
3.间隔增长量
4.间隔基期量
(十)杂糅题型
1.平均数倍数
2.增长量倍数、减少量倍数
3.平均数增长量
4.复杂增长量
七、比较型
(一)分数大小比较
1.比值比较
2.比重比较
3.增长率比较
4.基期量比较
5.平均数比较
6.平均数变形比较
7.利润率比较
(二)非分数大小比较
1.读数比较
2.除法转化乘法比较
3.两期比重比较
4.两期平均数比较
5.增长量比较
八、年均增长相关
1.求解年均增长量
2.年均增长量(率)不变求现期量
3.年均增长率计算
4.年均增长率比较
九、综合分析之策略
- 综合分析题目特征:题目中常出现“正确/错误”或者“能推出/不能推出”等字眼
- 各选项作答顺序:就简原则
- 现期相关的选项优先考虑;
- 时间点和时间段同时出现时,优先考虑时间点相关选项;
- 若时间都一致,则直接读数,不计算的选项优先考虑
- 可运用口诀解答的选项优先考虑:
- 如两期(平均数、比重等)比较,比较a和b;
- 增长量计算:n+1原则;
- 减少量计算:n-1原则;
- 增长量比较:大大则大等;
- 常见陷阱:
- 运算陷阱:混淆加减运算,多为百分点的计算;
- 单位陷阱:人与人次、%与‰等;
- 时间陷阱:大时间段与小时间段,3月与3月累计等。
未完待续。。。