相机与激光雷达标定:gazebo仿真livox_camera_lidar_calibration---R3live算法验证

本文详细介绍如何在Gazebo环境中利用livox_camera_lidar_calibration包进行Livox雷达与相机的外参标定,并展示了如何将标定结果应用于R3live算法配置,通过实际场景验证算法性能。过程包括标定板角点定位、外参调整和三维模型融合效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相机与激光雷达标定:gazebo仿真livox_camera_lidar_calibration---R3live算法验证

ROS功能包:livox_camera_lidar_calibration提供了一个手动校准Livox雷达和相机之间外参的方法,已经在Mid-40,Horizon和Tele-15上进行了验证。其中包含了计算相机内参,获得标定数据,优化计算外参和雷达相机融合应用相关的代码。本方案中使用了标定板角点作为标定目标物,由于Livox雷达非重复性扫描的特点,点云的密度较大,比较易于找到雷达点云中角点的准确位置。相机雷达的标定和融合也可以得到不错的结果。

在前几篇中介绍了livox_camera_lidar_calibration功能包.以及在gazebo中搭建了标定场景.并进行外参标定,进行了简单的验证.

本篇使用标定的外参,进行R3live算法的验证,看下效果怎么样

将得到的内外参数进行R3live的配置
打开r3live_config.yaml文件
修改:

  • camera_intrinsic
  • camera_dist_coeffs
  • camera_ext_t
  • camera_ext_R

注意之前标定的是相机到雷达的,R3live下面配置的雷达到相机的,所以要把得到外参旋转矩阵求逆,再填入,平移矩阵则取负

//之前的
0.00199437  -0.999998  -0.000472109 
-0.00306955  0.000465986  -0.999995  
0.999993  0.00199581  -0.00306862 
//求逆后
 0.00199437   	-0.00306956   	0.99999360   
-0.99999780   	0.00046599   	0.00199581   
-0.00047211   	-0.99999536   	-0.00306862   
Lidar_front_end:
   lidar_type: 1   # 1 for Livox-avia, 3 for Ouster-OS1-64
   N_SCANS: 6
   using_raw_point: 1
   point_step: 1
   
r3live_common:
   if_dump_log: 0                   # If recording ESIKF update log. [default = 0]
   record_offline_map: 1            # If recording offline map. [default = 1]
   pub_pt_minimum_views: 3          # Publish points which have been render up to "pub_pt_minimum_views" time. [default = 3]
   minimum_pts_size: 0.01           # The minimum distance for every two points in Global map (unit in meter). [default = 0.01] 
   image_downsample_ratio: 1        # The downsample ratio of the input image. [default = 1]
   estimate_i2c_extrinsic: 1        # If enable estimate the extrinsic between camera and IMU. [default = 1] 
   estimate_intrinsic: 1            # If enable estimate the online intrinsic calibration of the camera lens. [default = 1] 
   maximum_vio_tracked_pts: 600     # The maximum points for tracking. [default = 600]
   append_global_map_point_step: 4  # The point step of append point to global map. [default = 4]

r3live_vio:
   image_width: 1024
   image_height: 960
   camera_intrinsic:
      [715.521, 0.0, 511.578,
      0.0,  717.146, 481.681,
      0.0, 0.0, 1.0 ] 
   camera_dist_coeffs: [0.000047, 0.000106, 0.000019, 0.000009, 0.000000]  #k1, k2, p1, p2, k3
   # Fine extrinsic value. form camera-LiDAR calibration.
   camera_ext_R:
        [ 0.00199437, -0.00306956, 0.99999360,   
         -0.99999780, 0.00046599, 0.00199581,   
         -0.00047211, -0.99999536, -0.00306862 ]

   camera_ext_t: [-0.191228, 0.00300958, 0.0678278] 
   #camera_ext_t: [0,0,0] 
   # Rough extrinsic value, form CAD model, is not correct enough, but can be online calibrated in our datasets.
   #camera_ext_R:
   #    [0, 0, 1,
   #     -1, 0, 0,
   #     0, -1, 0]
   # camera_ext_t: [0,0,0] 
   
r3live_lio:        
   lio_update_point_step: 4   # Point step used for LIO update.  
   max_iteration: 2           # Maximum times of LIO esikf.
   lidar_time_delay: 0        # The time-offset between LiDAR and IMU, provided by user. 
   filter_size_corner: 0.30   
   filter_size_surf: 0.30
   filter_size_surf_z: 0.30
   filter_size_map: 0.30

验证的场景如下:
gazebo中的场景是这样的
在这里插入图片描述
控制无人机做了些旋转和平移

建立的三维模型如下:
在这里插入图片描述
拼接效果还可以

其中厂房的管道细节:
在这里插入图片描述
在这里插入图片描述

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月照银海似蛟龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值