深度学习——激活函数

激活函数的作用---提高模型的非线性表达能力。如果没有激活函数,模型只能处理简单的线性问题,所以激活函数是很重要的。
激活函数要满足三个基本条件:
  • 可微性: 当优化方法是基于梯度的时候,这个性质是必须的。
  • 单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。
  • 有限性: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会更加 稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是 无限 的时候,模型的训练会更加高效,不过在这种情况小,一般需要更小的learning rate
一般激活函数有sigmoid、tanh、ELUReLu和它的改进版
  • sigmoid

                                    
          
优点:
        最接近生物神经元的特性,一般输出是二分类问题时可以使用。
缺点:

 容易饱和,当X增大时,梯度几乎为零,一但落入饱和区,就会产生 梯度消失,sigmoid网络在5层之内就会产生梯度消失现象。
 sigmoid函数的输出都是正值,均值非零,会有偏移。    所以一般不用sigmoid激活函数。
  • tanh
                       
与sigmoid相比,优点:它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。缺点:然而,tanh一样具有软饱和性,会造成梯度消失。

  • ReLu

ReLU:可以看到,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。
改进:
LReLU:a比较小而且固定的时候,为LReLU   a值确定也很困难
  
RLReLU:a在一定范围内随机取值。             
RReLUa
  • ELU



融合了sigmoid和ReLU,左侧具有软饱和性,右侧无饱和性。右侧线性部分使得ELU能够缓解梯度消失,而左侧软饱能够让ELU对输入变化或噪声更鲁棒。ELU的输出均值接近于零,所以收敛速度更快。在ImageNet上,不加 Batch Normalization 30 层以上的 ReLU 网络会无法收敛,PReLU网络在MSRA的Fan-in (caffe )初始化下会发散,而 ELU 网络在Fan-in/Fan-out下都能收敛。
  • Maxout

maxout网络能够近似任意连续函数,且当w2,b2,…,wn,bn为0时,退化为ReLU。Maxout能够缓解梯度消失,同时又规避了ReLU神经元死亡的缺点,但增加了参数和计算量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值