用最简单的代码实现大津算法(最大类间方差法otsu)

大津算法是一种自适应的阈值确定方法,用于图像分割,通过最大化类间方差来寻找最佳阈值。本文介绍了算法原理,并提供了MATLAB代码示例。
摘要由CSDN通过智能技术生成

最大类间方差法是1979年由日本学者大津提出的,是一种自适应阈值确定的方法,又叫大津法,简称OTSU,是一种基于全局的二值化算法,它是根据图像的灰度特性,将图像分为前景和背景两个部分。当取最佳阈值时,两部分之间的差别应该是最大的,在OTSU算法中所采用的衡量差别的标准就是较为常见的最大类间方差。前景和背景之间的类间方差如果越大,就说明构成图像的两个部分之间的差别越大,当部分目标被错分为背景或部分背景被错分为目标,都会导致两部分差别变小,当所取阈值的分割使类间方差最大时就意味着错分概率最小。

图像分割成背景和目标两部分。需要背景和目标之间的类间方差最大。

图像f(x,y)前景和背景分割的阈值记为T

W0:前景的像素点数占整幅图像的比例;V0:前景的平均灰度

W1:背景的像素点数占整幅图像的比例;V1:背景的平均灰度

V: 图像的总平均灰度

g:类间方差

我们假设图像的大小为MxN,N0为<T的像素个数,N1为>T 的像素个数

W0=N0/(MxN) ;W1=N1/(MxN);N0+N1=MxN;W0+W1=1

V=W0*V0+W1*V1;g=W0(V0-V)^2+W1(V1-V)^2

=>g=W0W1(V0-V1)^2


下面给出OTSU的matlab代码:


l=imread(&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值