最大类间方差法是1979年由日本学者大津提出的,是一种自适应阈值确定的方法,又叫大津法,简称OTSU,是一种基于全局的二值化算法,它是根据图像的灰度特性,将图像分为前景和背景两个部分。当取最佳阈值时,两部分之间的差别应该是最大的,在OTSU算法中所采用的衡量差别的标准就是较为常见的最大类间方差。前景和背景之间的类间方差如果越大,就说明构成图像的两个部分之间的差别越大,当部分目标被错分为背景或部分背景被错分为目标,都会导致两部分差别变小,当所取阈值的分割使类间方差最大时就意味着错分概率最小。
图像分割成背景和目标两部分。需要背景和目标之间的类间方差最大。
图像f(x,y)前景和背景分割的阈值记为T
W0:前景的像素点数占整幅图像的比例;V0:前景的平均灰度
W1:背景的像素点数占整幅图像的比例;V1:背景的平均灰度
V: 图像的总平均灰度
g:类间方差
我们假设图像的大小为MxN,N0为<T的像素个数,N1为>T 的像素个数
W0=N0/(MxN) ;W1=N1/(MxN);N0+N1=MxN;W0+W1=1
V=W0*V0+W1*V1;g=W0(V0-V)^2+W1(V1-V)^2
=>g=W0W1(V0-V1)^2
下面给出OTSU的matlab代码:
l=imread(&#