LR模型——简单的通过距离预测温度

LR模型,理解成一个线性方程:如果只有一个特征:也就是y=ax+b,如果有两个特征也就是y=ax1+bx2+c
这里我们根据 距海边的距离 预测 城市的最高温度。

from sklearn.linear_model import LinearRegression
import numpy as np
import matplotlib.pyplot as plt
 
model = LinearRegression()#括号里为空表示采用了默认值,当然也可以自己调
near_citys_dist = np.array([2, 8, 71, 14, 37], dtype=int)  # 城市距离海边的最远距离
near_citys_max_temp = np.array([28.75, 30.79, 33.85, 30.91, 31.74])# 城市温度
model.fit(near_citys_dist.reshape(-1,1),near_citys_max_temp)#根据数据训练模型
x = np.array([65,12,44]).reshape(-1,1) #准备要预测的数据:距海边65、12、44km的城市温度
y = model.predict(x)#结果:[33.56614386 30.32827794 32.28321585]
 
print(model.coef_)  #coefficent,输出系数 0.061
print(model.intercept_) #跟y轴的交点坐标,即29.595
 
plt.scatter(near_citys_dist,near_citys_max_temp)#画图
plt.title('温度和距海洋距离关系')
plt.xlabel('距离')
plt.ylabel('温度')
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值