opencv,图像处理,特征提取
文章平均质量分 88
是否龙磊磊真的一无所有
来自海淀区某研究所的研究生。
展开
-
双目立体匹配中的极线约束(Epipolar Constraint),基础矩阵(Fundamental Matrix),本质矩阵(Essential Matrix),对极几何(2D-2D)
本文重点分析对极几何(Epipolar Geometry)、对极约束(Epipolar Constraint)、本质矩阵(Essential Matrix)和基础矩阵(Fundamental Matrix),以及他们之间的关系。原创 2023-04-22 01:14:42 · 1901 阅读 · 0 评论 -
光流法Optical Flow,Lucas-Kanade方法,CV中光流的约束分析
本文主要介绍计算机视觉中,光流法Optical Flow Method,Lucas-Kanade方法的约束,CV中光流的约束分析,包括了亮度不变约束,速度向量计算等方法。原创 2023-04-22 01:07:37 · 851 阅读 · 0 评论 -
史上最全事件相机DVS/Event-based Camera的介绍和分析综述文章
事件相机DVS(Dynamic Vision Sensor),该相机具有更宽的动态范围,输出较传统相机而言更稀疏、更快。一种快匹配自适应光流算法和完全通过FPGA完成的基于DVS相机的硬件实现与其功耗和计算速度方面的优势,最后介绍了该项研究在自动驾驶领域的广阔应用前景。原创 2022-12-13 11:30:25 · 10906 阅读 · 0 评论 -
OpenCV中CommandLineParser命令行输入使用方法介绍
OpenCV中CommandLineParse类主要是命令行解析类。OpenCV中出现此类的主要目:方便用户在命令行使用过程中减少工作量。具体使用方式如下。我们将从三个方面介绍。首先是CommandLineParser类的构造函数,说明一下这个类的一些常用成员函数;随后介绍如何按需添加和配置参数和变量;最后直接使用Visual Studio 或者生成的exe文件,来按照命令行的方式,输入参数,并运行得到结果。...............原创 2022-07-20 16:38:11 · 2823 阅读 · 0 评论 -
李群与李代数对SLAM移动场景的运动坐标表示
本篇博文,将介绍,李群与李代数的关系,如何利用李群与李代数,构造便于表示的旋转/变换矩阵,来表示移动的场景和目标。核心内容是:传统的旋转矩阵R和变换矩阵T,如果要在欧式空间进行构造,那么构造这个矩阵非常复杂,需要9个参数描述旋转,12个参数描述变换(9个旋转+3个平移)。下面通过对李代数的介绍,指数映射,对数映射,刚体的旋转,刚体的变换(旋转+平移),随后给定参考坐标X0,移动相机,对场景进行拍摄,还介绍如何通过李代数来表示场景的移动过程,参考的坐标点,在过程中,是如何随着相机移动变等问题探讨与分析。原创 2022-05-16 20:14:46 · 1162 阅读 · 0 评论 -
《SLAM十四讲》第四讲 李群与李代数 习题5证明
第四讲 李群与李代数 习题证明 第5题,本博客《SLAM十四讲》,主要是针对第四讲 第5题这个证明题,进行展开。网上其他的各种证明方法,都稍微有点复杂。所以有如下这个方法。原创 2022-05-13 20:36:53 · 691 阅读 · 0 评论 -
目标检测中如何定义正负样本,和正负样本在学习过程中loss计算起的作用
如何定义正负样本,和正负样本在学习过程中loss计算起的作用正负样本定义分类和回归head如何学习和利用划分后的正负样本(loss如何计算)正负样本在分类中loss计算的处理正样本在bbox 回归中的loss计算在目标检测中,经常说起正负样本。本文仔细说一下,如何定义正负样本;定义正负样本之后,在loss计算中,正负样本分别参与到classification head和regression head中,是如何使用正负样本信息进行监督学习的。loss如何从正负样本中,直接得到这两类样本对不同任务的损失函数和原创 2021-08-27 11:07:19 · 9631 阅读 · 8 评论 -
史上最全面实用的工业相机选型,相机速率计算,相机靶面,相机接口,图像格式等参数详解与分析
史上最全面实用工业相机选型,相机速率计算,相机靶面,相机接口,图像格式等参数详解与分析前言一、相机关键参数二、镜头关键参数三、相机与镜头选型四、图像格式详解五、接口类型分析六、其他补充说明七、参考资料前言本文,从工业相机的关键参数,相机镜头的关键参数,相机的速率选择,应用场景的速度分析,相机的接口选择,相机等数据传输格式等多方面综合介绍和实际分析出发,来为入门工程师,中级工程师,或者需要单独考虑某方面的配置程序员等,提供一个概括讲解或分析。一、相机关键参数对于工业相机,我们常用的是CMOS相原创 2021-04-11 00:31:39 · 7661 阅读 · 2 评论 -
关于创建zeromq消息队列,设置和更改IP地址,远程可以访问,不只是本地链接。python代码。
关于zeromq的创建,绑定本地,和绑定其他客户端的方法。网上一大堆关于zmq的通信模式的介绍,包括三种类型,具体我就不在描述。但是他们给的demo,都是创建本地作为server服务端,也作为client客户端的这个方式。都将端口设置为5555。这个方式是本地连本地,本地控制本地。本地作为客户端:作为客户端,发送信息。import zmqcontext = zmq.Context()# Socket to talk to serverprint("Connecting to h原创 2021-03-01 16:05:38 · 1584 阅读 · 0 评论 -
OpenCV 相机校正过程中,calibrateCamera函数projectPoints函数的重投影误差的分析
主要是讲解Python利用OpenCV进行相机校正过程中,几个重点参数的分析。标定的过程就不再一一赘述了,很多博客和网站都在讲解怎么进行标定。本文章主要分析,标定过程中的误差计算公式,和对calibrateCamera( ) 和 projectPoints( )两个函数得到的误差,不同的原因进行分析。本文是重点分析重投影误差的计算方式。准确描述opencv自带的函数,和各个博客、教程里面所说的重投影误差计算的流程进行分析和对比,描述官方的重投影误差和教程实现重投影误差的差别。...原创 2021-01-24 02:03:45 · 31188 阅读 · 55 评论 -
用Macbook-苹果系统写代码出现显示问题Text input context does not respond to _valueForTIProperty:
Macbook / 苹果系统写代码出现显示问题当使用Mac系统,在写代码的时候,如果是有一个GUI显示界面,然后你又去点击这个界面。此时,将报错。我的源代码,是读取图片,显示图片。import cv2 as cvpic = cv.imread("test.jpeg")dst = cv.resize(pic, (512, 512))cv.imshow("This is the test pic!", dst)cv.waitKey(5000)报错信息如下:2021-01-10 19:54:原创 2021-01-10 20:13:40 · 10669 阅读 · 16 评论 -
基于深度学习的口罩识别与检测PyTorch实现
基于深度学习的口罩识别与检测PyTorch实现1. 设计思路1.1 两阶段检测器:先检测人脸,然后将人脸进行分类,戴口罩与不戴口罩。1.2 一阶段检测器:直接训练口罩检测器,训练样本问人脸的标注信息,戴口罩的,不带口罩的。2. 算法具体实现。2.1 两阶段口罩识别检测器设计2.2 实现代码分析2.2.1 训练分类器并且保存模型2.2.2 人脸检测与剪裁,然后进行分类。3.总结4. 参考链接。两阶段口罩检测的算法设计与实现。主要讲解整体pipeline的设计。原创 2020-10-25 15:11:48 · 14162 阅读 · 8 评论 -
最本质的相机内参intrinsics与外参extrinsics分析,从建模,推导到求解
本文从最本质的原理出发,对相机的外参和内参进行了描述。从不同坐标系的建模,到3D到2D的投影矩阵分析,到矩阵变换的求解。全面的分析和描述了相机参数的原理。camera extrinsics and intrinsics。原创 2020-04-20 13:18:10 · 8186 阅读 · 0 评论 -
ORB特征提取算法分析与实现,算法分解
ORB特征,从它的名字中可以看出它是对FAST特征点与BREIF特征描述子的一种结合与改进,这个算法是由Ethan Rublee,Vincent Rabaud,Kurt Konolige以及Gary R.Bradski在2011年一篇名为“ORB:An Efficient Alternative to SIFT or SURF”的文章中提出。就像文章题目所写一样,ORB是除了SIFT与SURF外一个很好的选择,而且它有很高的效率。ORB特征是目前最优秀的特征提取与匹配算法之一。原创 2017-11-28 12:36:33 · 11125 阅读 · 7 评论 -
ORB(FAST+BRIEF)特征提取与实现——特征点提取算法分析
before:本篇博文先主要叙述ORB特征点提取算法,包括对其分解,FAST特征点的生成,BRIEF描述子的生成。然后对FPGA实现特征点提取进行简介。铺垫好这些基础后,在下一篇博文中,仔细介绍如何采用FPGA来实现高速的特征点提取。如何用VHDL来并行实现这一算法。请阅读本文时,记得看下一篇博文!一 、前言1.摘要:图像特征的检测和提取是计算机视觉原创 2018-01-31 21:45:06 · 27349 阅读 · 26 评论 -
基于CNN目标检测方法(RCNN,Fast-RCNN,Faster-RCNN,Mask-RCNN,YOLO,SSD)行人检测,目标追踪,卷积神经网络
一、研究意义卷积神经网络(CNN)由于其强大的特征提取能力,近年来被广泛用于计算机视觉领域。1998年Yann LeCun等提出的LeNet-5网络结构,该结构使得卷积神经网络可以端到端的训练,并应用于文档识别。LeNet-5结构是CNN最经典的网络结构,而后发展的卷积神经网络结构都是由此版本衍生而来。在过去六年中,由于深度学习和卷积网络的发展和进步,基于图...原创 2018-06-10 11:10:38 · 38831 阅读 · 0 评论 -
OpenCV图像序列生成视频,MATLAB图像生成avi视频,image2video。
讲解如何利用OpenCV合成avi格式视频。在处理图像和视频的过程中,通常会遇到将视频转换成图像处理,或者将处理完的图像合成原视频。在基于视频的处理过程中,通常都是先将视频转换为每一帧图像,然后基于图像去处理。OpenCV有很多关于Video2Image的相关算法代码。注意,视频转图像过程中,只要有OpenCV配置好了,正常条件下都可以转换成图像。不依赖其他库,不依赖第三方库。将图像转合成...原创 2018-09-10 14:31:05 · 1001 阅读 · 0 评论 -
用Python在Windows或Linux下批量删除文件夹中指定的文件
情况说明:当在一个文件夹下面有好几十个或几百个文件需要删除,此时一一去挑选费时费力,特别是在Linux下面。因此,需要批量删除文件。 对训练样本(图像)和测试样本(图像)进行评估时候,需要查看是数据本身问题还是自己模型的问题,因此需要将错误分类的样本(图像)挑选出来,看到底是标注本身问题,还是说模型没有训练好。当是样本本身问题,需要将错误样本删除。 在3W多个训练样本中,...原创 2019-02-27 17:42:30 · 2160 阅读 · 0 评论 -
Pytorch 类型错误:Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensor.
Expected object of type torch.FloatTensor but found type torch.cuda.FloatTensorPytorcht调试过程中,将数据传入模型,进行计算。出现这个error,表明你的数据格式有问题。也许模型是GPU上的,参数是CPU类型。也许模型是CPU,参数是GPU类型。这是由于用了.cuda()进行转换。两个方法可以解决。1....原创 2019-02-26 17:28:50 · 5631 阅读 · 1 评论 -
目标检测计算mAP,AP,Recall,Precision的计算方式和代码(YOLO和FastRCNN等)
目标检测中计算mAP是较为复杂的,并不是很多讲解中说的那个计算precision和recall,然后总的ground truth 目标和检测出的真实目标做除法就可以了。而是需要构建precision和recall 曲线,然后计算曲线面积。一下是代码,可以去相关网站查看计算过程,过程较为复杂。mAP计算详解https://github.com/rafaelpadilla/Object-De...原创 2019-03-24 23:06:23 · 8102 阅读 · 1 评论 -
YOLOv3 训练的各种config文件以及weights文件。
YOLOv3训练过程中的各种文件。包括配置文件,权重文件。yolov3.ptyolov3.weightsdarknet53.conv.74yolov3-spp.weightsyolov3-tiny.conv.15yolov3-tiny.ptyolov3-tiny.weighshttps://drive.google.com/open?id=1uxgUBemJVw9w...原创 2019-03-21 18:07:18 · 20618 阅读 · 17 评论 -
SSD(Single shot multibox detector)目标检测模型架构和设计细节分析
先给出论文链接:SSD: Single Shot MultiBox Detector 本文将对SSD中一些难以理解的细节做仔细分析,包括了default box和ground truth的结合,default box结合到不同检测的feature map层上,难样本挖掘,数据扩充,Atrous Algorithm算法原理等。包括了SSD对一阶段目标检测的贡献以及总结了SSD对其他目标检测方法的关键改进点。一、SSD具有如下主要特点 ...原创 2019-04-27 19:24:05 · 1374 阅读 · 0 评论 -
SURF算法与SIFT算法的性能比较——图像特征点检测与提取算法分析
图像特征点提取算法的算法研究(SURF和SIFT算法)1. 摘要 计算机视觉中,很大一部分研究集中在图像特征提取和特征生成算法上。对图像的优化,不同于一般数学问题的优化方法,图像的优化是对像素点,在某一个小的邻域内,进行特征的提取或者图像的分析,该优化主要是进行局部区域的优化,要寻找局部极值,而不像传统的优化算法那样进行全局的优化求解。由于相同物体在不同状态下所...原创 2017-11-30 21:19:02 · 16885 阅读 · 37 评论