高效网络设计
文章平均质量分 73
是否龙磊磊真的一无所有
来自海淀区某研究所的研究生。
展开
-
半监督学习Semi- Supervised Learning的一致性约束,一致正则损失
半监督学习Semi-Supervised Learning核心思想,对于有标签的数据,采用有监督的交叉熵损失;对于无标签数据,采用无监督的一致性正则损失。 分析了半监督学习的主流方法,以及一致性约束的作用条件和对分类损失的不同部分的作用。原创 2023-05-09 14:24:43 · 1866 阅读 · 1 评论 -
关于创建zeromq消息队列,设置和更改IP地址,远程可以访问,不只是本地链接。python代码。
关于zeromq的创建,绑定本地,和绑定其他客户端的方法。网上一大堆关于zmq的通信模式的介绍,包括三种类型,具体我就不在描述。但是他们给的demo,都是创建本地作为server服务端,也作为client客户端的这个方式。都将端口设置为5555。这个方式是本地连本地,本地控制本地。本地作为客户端:作为客户端,发送信息。import zmqcontext = zmq.Context()# Socket to talk to serverprint("Connecting to h原创 2021-03-01 16:05:38 · 1584 阅读 · 0 评论 -
基于FPGA实现的MobileNet V1,FPGA深度学习加速器设计 CNN Accelerators based on FPGAs
Automatic Generation of Multi-precision Multi-arithmetic CNN Accelerators for FPGAs最近arXiv上挂出来一篇文章,采用FPGA实现MobileNet V1,并且完全是不借助片外资源,用的是on-chip memory,没有利用off-chip RAM。整个模型在FPGA的内部有限资源上实现的。能够使得帧率在30...原创 2019-11-21 18:22:51 · 4535 阅读 · 7 评论 -
面向Mobile device的CNN模型手工设计与NAS分析总结,MobileNet V1,V2,V3,Efficient,MNasNet以及Efficient network design
手工方法和NAS的高效网络模型设计总结与分析这篇文章主要关注对于移动端,资源受限平台的高效神经网络设计(Manually)和搜索(NAS)。 高效的CNN设计不只是用在服务器,云端,资源充足的设备上,也逐渐迁移应用到mobile devices,robotics等。这些平台具有内存有限,计算资源一定,对应用延迟敏感等特点。最近的一些文章,已经从耗时,...原创 2019-11-13 17:52:41 · 2492 阅读 · 3 评论