【线性系统】五、稳定性

本文详细探讨了线性系统的稳定性,重点在于BIBO稳定性和零输入响应的稳定性。BIBO稳定性针对零状态响应,确保有界输入产生有界输出。介绍了SISO和MIMO系统中BIBO稳定的条件,涉及到拉普拉斯变换和Z变换。同时,讲解了零输入响应的边缘稳定和近似稳定,强调特征值在确定系统稳定性中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性系统总能被分解成零输入响应和零状态响应。通常我们分开来研究这两种响应的稳定性。

对于零状态响应(zero state),我们有BIBO(bounded-input bounded-output)稳定

对于零输入响应(zero input),我们有边缘稳定(marginal)近似稳定(asymptotic)


BIBO稳定

一个SISO LTI 因果系统可被表示为:(初始状态t=0下relaxed)

y(t) = \int_{t}^{0}g(t-\tau)u(\tau)d\tau = \int_{t}^{0}g(\tau)u(t-\tau)d\tau(1)

其中g(t)为脉冲响应。

BIBO稳定: 对于零状态响应,所有有界输入都会变成有界输出。

定理一:

一个SISO系统被描述为BIBO稳定,当且仅当g(t)[0,\infty)为绝对可积的,或者:

\int_{0}^{\infty} \left | g(t) \right |dt \leqslant M< \infty

定理二:

如果系统响应g(t)是BIBO稳定的,那么当t\rightarrow \infty:

1. 输入为u(t) = a 产生的输出,对所有t\geq 0接近\hat{g}(0)\cdot a;

2.输入为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值