【线性系统】六、能控性和能观性

能控性是指状态空间方程能否能通过改变输入来控制。

能观性是指是否能通过输出来观察系统的初始状态。



能控性

n维p输入方程 \dot x = Ax+Bu

Ap\times pBn\times p的实矩阵。因为输出在能控性上不重要,所以在考虑能控性时进行忽略。

定义:状态方程或(A,B)对为能控的,当所有初始状态x(0) = x_0 和所有最终状态 x_1 ,存在输入能在有限时间内实现从x_0x_1的转变。否则系统不能控。

定理:(以下这些性质是等效的)

1. n维对(A,B)是可控的。

2. n\times n矩阵

W_c(t) = \int_{0}^{t}e^{A\tau}B{B}'e^{​{A}'\tau}d\tau = \int_{0}^{t}e^A(t-\tau)B{B}'e^{​{A}'(t-\tau)}d\tau对所有t> 0

3. n\times np 控制矩阵

C = [B AB A^2B \cdots A^{n-1}B] 行满秩。

4. n\times (n+p)矩阵[A-\lambda I B] 对每个特征值行满秩(A的所有\lambda)。

5. 如果所有特正都有负实部,那么唯一值AW_c+W_c{A}' = -B{B}' 是半正定的。它的解被称为能控性gramian矩阵。可被表示为W_c = \int_{0}^{\infty}e^{A\tau}B{B}'e^{​{A}'\tau}d\tau

例一:

状态方程:

\dot x = \begin{bmatrix} 0 &1 & 0 &0 \\ 0 & 0& -1&0 \\ 0& 0& 0& 1\\ 0& 0& 5& 0 \end{bmatrix}x + \begin{bmatrix} 0\\1\\0\\-2 \end{bmatrix}u

y = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}x

通过计算:C = [B AB A^2B A^3B] = \begin{bmatrix} 0 & 1 & 0 & 2\\ 1& 0& 2 & 0\\ 0& -2 & 0 &-10 \\ -2& 0& -10 &0 \end{bmatrix}

这个矩阵的秩是4,所以系统是可控的。

例二:

状态方程:

\dot x = \begin{bmatrix} -0.5 &0 \\ 0& -1 \end{bmatrix}+ \begin{bmatrix} 0.5\\1 \end{bmatrix}u

\rho ([B AB]) = \rho \begin{bmatrix} 0.5 & -0.25\\ 1& -1 \end{bmatrix} = 2所以方程可控。

定理二:

可控性在等效变换后是不会改变的。

定理三:

经过等效变换或者,对B的列的重新排序,可控性indicies是不变的。


能观性

如果说能控性是指通过输入来控制状态的可能性,那么能观性则是指通过输出来估计系统输入的可能性。

考虑n维p输入q输出的状态方程:

\dot x = Ax+Bu

y = Cx+Du

定义

状态方程是能观的,当对于任何初始状态x(0),  存在一个有限的 t_1>0使在[0,t1]的输入u和输出y能够反映出唯一的初始状态x(0)

定理:(每一条等效)

1. n维对(A,C)是能观的;

2. n\times n矩阵 W_0(t) = \int_{0}^{t}e^{​{A}'\tau}{C}'Ce^{A\tau}d\tau 对所有t>0非奇异;

3. n\times nq能观矩阵O = \begin{bmatrix} C\\ CA\\ \vdots \\ CA^{n-1} \end{bmatrix}列满秩,秩等于n。

4. (n+q)\times n矩阵\begin{bmatrix} A-\lambda I\\ C \end{bmatrix}对所有特征值满秩。

5. 。。。

 

  • 7
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值