【线性系统】四、状态空间的解法和实现(1)——线性非时变的解法和实现


解法

线性非时变(LTI)系统可被描述为

\dot{x}(t) = Ax(t) + Bu(t)     

y(t) = Cx(t) + Du(t)

进行拉普拉斯变换得到:

\hat{x}(s) = (sI-A)^{-1}[x(0)+B\hat{u}(s)]

\hat{y}(s) = C(sI-A)^{-1}[x(0)+B\hat{u}(s)]+D\hat{u}(s)

有两种方法计算(sI-A)^{-1}

例:

A = \begin{bmatrix} 0 &-1 \\ 1 & -2 \end{bmatrix}

计算(sI-A)^{-1}

方法1:

(sI-A)^{-1} = \begin{bmatrix}s&1\\-1& s+2 \end{bmatrix}^{-1} = \frac{1}{s^2+2s+1}\begin{bmatrix}s+2&-1\\1& s \end{bmatrix} = \begin{bmatrix} \frac{s+2}{(s+1)^2}&-\frac{-1}{(s+1)^2}\\\frac{1}{(s+1)^2}& \frac{s}{(s+1)^2} \end{bmatrix}

方法2:

A的特征值有两个,-1, -1。使 h(\lambda) = \beta_0+\beta_1\lambda。如果h(\lambda)等于f(\lambda): = (s-\lambda)^{-1}那么,

f(-1) = h(-1): (s+1)^{-1} = \beta_0-\beta_1;

{f}'(-1) = {h}(-1): (s+1)^{-2} = \beta_1 。

因此我们有h(\lambda) = [(s+1)^{-1}+(s+1)^{-2}]+(s+1)^{-2}\lambda

(sI-A)^{-1} = h(A) = [(s+1)^{-1}+(s+1)^{-2}]I + (s+1)^{-2}A = \begin{bmatrix} (s+2)/(s+1)^{2} & -1/(s+1)^2 \\ 1/(s+1)^2& s/(s+1)^2 \end{bmatrix}

例:方程 \dot{x}(t) = \begin{bmatrix} 0 & -1\\ 1& -2 \end{bmatrix}x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix}u(t) 的解为,

x(t) = e^{At}x(0)+\int_{0}^{t}e^{t-\tau}Bu(\tau)d\tau

其中e^{At}(sI-A)^{-1}的拉普拉斯反变换,我们已经通过上一个例子进行了计算。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值