参考https://en.wikipedia.org/wiki/Model_predictive_control
MPC 控制是一种高级的进程控制(process control)方法。用来控制进程使它满足一些限制条件。它依赖于过程的动态模型,通常这个模型是一个得到系统认证的经验的线性模型。
好处:MPC的主要优点是它允许优化当前时间点,同时考虑未来的时间点。这是通过优化有限时间范围,但仅实现当前时间点然后重复再次优化来实现的。它能够预测未来事件并能够相应地采取控制措施。
1.综述
MPC模型预测模型系统中由于自变量的值变化导致的因变量的变化。
MPC使用当前测量,当前进程的动态过程,MPC模型和过程变量目标和限制来计算因变量的未来变化。计算这些变化以保持因变量接近目标,同时遵守独立变量和因变量的约束。 MPC通常仅发出要实现的每个自变量的第一个变化,并在需要下一个变化时重复计算。
2.MPC 控制原则
Model Predictive Control (MPC) 是一个多变量控制算法,使用:
- 进程内部的动态模型
- 过去控制动作的历史
- 在后退预测范围内的优化成本函数J
来计算优化控制动作。
例:
不违反这些变量的约束:
:第
个控制变量(e.g. 测量温度)
: 第
个参考变量(e.g. 需求温度)
: 第
个 操纵变量 (e.g. 控制暖气)
:
的权重系数
:
的权重系数
等等。