论文杂记 | ||
---|---|---|
上一篇 | 主目录 | 下一篇 |
【前言】
西安交通大学学报-2019-图像检索–联合加权聚合深度卷积特征的图像检索方法-时璇
论文下载链接
1 课题背景
1.1 存在的问题
图像特征提取不充分影响检索平均精确率。基于内容的图像检索技术的关键步骤时得到图像的特征表示。
1.2 其他方法介绍
SIFT :
○ 即尺度不变特征变换(Scale-invariant feature transform),SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。
CNN:
○ 即卷积神经网络,此类方法直接提取某层 的输出作为图像的特征表示。卷积神经网络的隐含层包含卷积层、池化层和全连接层3类常见构筑,隐含层中的顺序通常为:输入-卷积层-池化层-全连接层-输出。
○ 将网络的全连接层输出作为图像的全局特征表示,会丢失图像的空间信息,造成内容的畸变,因此平均检索率不高。
○ 将卷积层输出即图像的深度卷积特征作为其全局特征表示,保留空间信息,无需缩放图片
CroW方法 :
○ 通过空间权重和通道权重来突出图像的显著性区域
SBA:
○ 利用图像深度卷积特征中不同特征图的区分性生成语义探测器,通过加权聚合得到图像全局特征表示
1.3 本文方法
本文基于SBA和CroW方法 提出联合加权聚