《实变函数简明教程》,第三章:可测函数,P58-P78,定理整理
- P59,定理3.1(函数可测的等价命题)
- P60,定理3.2(可测函数的四则运算)
- P61,定理3.3(可测函数列的极限性质)
- P62,定理3.4(可测函数在可测子集上的保可测性)
- P62,定理3.5(可测函数在可测集列并集上的保可测性)
- P63,定理3.6(可测函数的逼近定理)
- P65,定理3.7(两函数同可测或同不可测)
- P65,定理3.8(可测函数列的极限性质)
- P66,定理3.9(Egorov定理,几乎处处收敛 推导 基本上一致收敛)
- P69,定理3.10(几乎处处收敛 推导 依测度收敛)
- P71,定理3.11(依测度收敛的极限唯一性)
- P72,定理3.12(F. Riesz定理,依测度收敛 推导 几乎处处收敛)
- P75,定理3.13(Lusin定理,几乎处处有限的函数可测 推导 函数基本上连续)
- P76,定理3.14(可测函数 与 全空间上连续函数 的接近性)
- P78,Littlewood三原则
P59,定理3.1(函数可测的等价命题)
提供对象: f f f是可测集 E E E上的广义实值函数。
定理内容:下列命题是等价的:
- f f f在 E E E上可测。
- 对任意实数 a a a,点集 E ( f ≥ a ) E\left( f\ge a \right) E(f≥a)可测。
- 对任意实数 a a a,点集 E ( f < a ) E\left( f<a \right) E(f<a)可测。
- 对任意实数 a a a,点集 E ( f ≤ a ) E\left( f\le a \right) E(f≤a)可测。
P60,定理3.2(可测函数的四则运算)
提供对象: f , g f,g f,g是点集 E E E上的可测函数。
定理内容:
c f ( x ) ( c 为 常 数 ) , f ( x ) + g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) / g ( x ) ( 假 定 在 E 上 每 一 点 有 意 义 ) cf\left( x \right)(c为常数),f\left( x \right)+g\left( x \right),\\f\left( x \right)\centerdot g\left( x \right),f\left( x \right)/g\left( x \right)(假定在E上每一点有意义) cf(x)(c为常数),f(x)+g(x),f(x)⋅g(x),f(x)/g(x)(假定在E上每一点有意义)
都是 E E E上的可测函数。
P61,定理3.3(可测函数列的极限性质)
提供对象: { f k } \left\{ { {f}_{k}} \right\} { fk}是点集 E E E上的可测函数列。
定理内容: sup k f k ( x ) , inf k f k ( x ) , lim ‾ k → ∞ f k ( x ) , lim ‾ k → ∞ f k ( x ) \underset{k}{\mathop{\sup }}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k}{\mathop{\inf }}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k\to \infty }{\mathop{\overline{\lim }}}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k\to \infty }{\mathop{\underline{\lim }}}\,{ {f}_{k}}\left( x \right) ksupfk(x), kinffk(x), k→∞limfk(x), k→∞limfk<