《实变函数简明教程》,第三章:可测函数,P58-P78,定理整理

本文详细梳理了实变函数中关于可测函数的重要定理,包括函数可测的等价命题,可测函数的四则运算,可测函数列的极限性质,以及在可测子集上的保可测性和在可测集列并集上的性质。此外,还探讨了可测函数的逼近、一致收敛、依测度收敛等相关定理,揭示了实变函数理论的基础和深度。
摘要由CSDN通过智能技术生成

P59,定理3.1(函数可测的等价命题)

提供对象: f f f可测集 E E E上的广义实值函数

定理内容:下列命题是等价的:

  1. f f f E E E上可测。
  2. 对任意实数 a a a,点集 E ( f ≥ a ) E\left( f\ge a \right) E(fa)可测。
  3. 对任意实数 a a a,点集 E ( f < a ) E\left( f<a \right) E(f<a)可测。
  4. 对任意实数 a a a,点集 E ( f ≤ a ) E\left( f\le a \right) E(fa)可测。

P60,定理3.2(可测函数的四则运算)

提供对象: f , g f,g f,g是点集 E E E上的可测函数

定理内容:
c f ( x ) ( c 为 常 数 ) , f ( x ) + g ( x ) , f ( x ) ⋅ g ( x ) , f ( x ) / g ( x ) ( 假 定 在 E 上 每 一 点 有 意 义 ) cf\left( x \right)(c为常数),f\left( x \right)+g\left( x \right),\\f\left( x \right)\centerdot g\left( x \right),f\left( x \right)/g\left( x \right)(假定在E上每一点有意义) cf(x)cf(x)+g(x)f(x)g(x)f(x)/g(x)E

都是 E E E上的可测函数。

P61,定理3.3(可测函数列的极限性质)

提供对象: { f k } \left\{ { {f}_{k}} \right\} { fk}是点集 E E E上的可测函数列

定理内容: sup ⁡ k   f k ( x ) ,   inf ⁡ k   f k ( x ) ,   lim ⁡ ‾ k → ∞   f k ( x ) ,   lim ⁡ ‾ k → ∞   f k ( x ) \underset{k}{\mathop{\sup }}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k}{\mathop{\inf }}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k\to \infty }{\mathop{\overline{\lim }}}\,{ {f}_{k}}\left( x \right),\text{ }\underset{k\to \infty }{\mathop{\underline{\lim }}}\,{ {f}_{k}}\left( x \right) ksupfk(x), kinffk(x), klimfk(x), klimfk​<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值