定理7(可测函数与简单函数的关系)
- 若 f ( x ) f ( x ) f(x) 在 E E E 上非负可测,则存在可测简单函数列 { φ k ( x ) } , \left\{ \varphi _ { k } ( x ) \right\} , { φk(x)}, 使得对任意 x ∈ E , x \in E , x∈E, φ k ( x ) ⩽ φ k + 1 ( x ) ( k = 1 , 2 , ⋯ ) , \varphi _ { k } ( x ) \leqslant \varphi _ { k + 1 } ( x ) ( k = 1 , 2 , \cdots ) , φk(x)⩽φk+1(x)(k=1,2,⋯),且 lim k → ∞ φ k ( x ) = f ( x ) ; \lim _ { k \rightarrow \infty } \varphi _ { k } ( x ) = f ( x ) ; limk→∞φk(x)=f(x);
- 若 f ( x ) f ( x ) f(x) 在 E E E 上可测,则存在可测简单函数列 { φ k ( x ) } , \left\{ \varphi _ { k } ( x ) \right\} , { φk(x)}, 使得对任意 x ∈ E , x \in E , x∈E, lim k → ∞ φ k ( x ) = f ( x ) . \lim _ { k \rightarrow \infty } \varphi _ { k } ( x ) = f ( x ) . limk→∞φk(x)=f(x). 若 f ( x ) f ( x ) f(x) 还 在 E E E 上有界,则上述收敛可以是一致的
证明
(1)
若 f ( x ) f ( x ) f(x) 在 E E E 上 非负可测对任意自然数 k , k , k, 将 [ 0 , k ] [ 0 , k ] [0,k]划分为 k 2 k k 2 ^ { k } k2k 等份,令
E k , j = E [ j − 1 2 k ⩽ f < j 2 k ] , j = 1 , 2 , ⋯ , k 2 k , E _ { k , j } = E \left[ \cfrac { j - 1 } { 2 ^ { k } } \leqslant f < \cfrac { j } { 2 ^ { k } } \right] , \quad j = 1 , 2 , \cdots , k 2 ^ { k } , Ek,j=