实变函数论4-可测函数1-可测函数13:定理7【可测函数与简单函数的关系】

定理7(可测函数与简单函数的关系)

  1. f ( x ) f ( x ) f(x) E E E 上非负可测,则存在可测简单函数列 { φ k ( x ) } , \left\{ \varphi _ { k } ( x ) \right\} , { φk(x)}, 使得对任意 x ∈ E , x \in E , xE, φ k ( x ) ⩽ φ k + 1 ( x ) ( k = 1 , 2 , ⋯   ) , \varphi _ { k } ( x ) \leqslant \varphi _ { k + 1 } ( x ) ( k = 1 , 2 , \cdots ) , φk(x)φk+1(x)(k=1,2,), lim ⁡ k → ∞ φ k ( x ) = f ( x ) ; \lim _ { k \rightarrow \infty } \varphi _ { k } ( x ) = f ( x ) ; limkφk(x)=f(x);
  2. f ( x ) f ( x ) f(x) E E E 上可测,则存在可测简单函数列 { φ k ( x ) } , \left\{ \varphi _ { k } ( x ) \right\} , { φk(x)}, 使得对任意 x ∈ E , x \in E , xE, lim ⁡ k → ∞ φ k ( x ) = f ( x ) . \lim _ { k \rightarrow \infty } \varphi _ { k } ( x ) = f ( x ) . limkφk(x)=f(x). f ( x ) f ( x ) f(x) 还 在 E E E 上有界,则上述收敛可以是一致的

证明
(1)
f ( x ) f ( x ) f(x) E E E 上 非负可测对任意自然数 k , k , k, [ 0 , k ] [ 0 , k ] [0,k]划分为 k 2 k k 2 ^ { k } k2k 等份,令

E k , j = E [ j − 1 2 k ⩽ f < j 2 k ] , j = 1 , 2 , ⋯   , k 2 k , E _ { k , j } = E \left[ \cfrac { j - 1 } { 2 ^ { k } } \leqslant f < \cfrac { j } { 2 ^ { k } } \right] , \quad j = 1 , 2 , \cdots , k 2 ^ { k } , Ek,j=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值