4.9.1. 轮廓:入门

轮廓是图像处理中用于形状分析和物体检测的重要工具。在OpenCV中,使用cv.findContours()函数从二进制图像中找到轮廓,而cv.drawContours()用于绘制轮廓。轮廓近似方法如cv.CHAIN_APPROX_SIMPLE可减少内存使用,仅保存轮廓关键点。文章还提到了轮廓检索模式和轮廓逼近方法的选择对处理效率的影响。
摘要由CSDN通过智能技术生成

目标:

  • 了解什么是轮廓
  • 学习查找轮廓,绘制轮廓
  • 函数: cv.findContours(), cv.drawContours()

什么是轮廓?

轮廓可以简单地解释为连接所有具有相同的颜色或强度的连续点(沿着边界)的曲线。轮廓是形状分析和物体检测和识别的很有用的工具。

  • 为了更好的准确性,使用二进制图像,因此,在找到轮廓之前,应用阈值或canny边缘检测。
  • 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回。
  • 在OpenCV中,找到轮廓就像从黑色背景中找到白色物体。所以请记住,要找到的对象应该是白色,背景应该是黑色。

让我们看看如何找到二进制图像的轮廓:

import numpy as np
import cv2 as cv

im = cv.imread('test.jpg')
imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
ret, thresh = cv.threshold(imgray, 127, 255, 0)
contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)

cv.findContours()函数中有三个参数,第一个是源图像,第二个是轮廓检索模式,第三个是轮廓逼近方法。它输出轮廓和层次结构。contours是图像中所有轮廓的Python列表,每个单独的轮廓是对象边界点坐标(x,y)的Numpy数组。

注意:我们稍后将详细讨论第二和第三个参数以及层次结构。在此之前,代码示例中给出的值对所有图像都可以正常工作。

如何绘制轮廓?

要绘制轮廓,可以使用cv.drawContours函数。如果图像有边界点,它也可以用于绘制任何形状。它的第一个参数是源图像,第二个参数是应该作为Python列表传递的轮廓,第三个参数是轮廓索引(在绘制单个轮廓时很有用。绘制所有轮廓,传递-1),其余参数是颜色,厚度等等

要绘制图像中的所有轮廓:

cv.drawContours(img, contours, -1, (0,255,0), 3)

要绘制单个轮廓,请输入四个轮廓点:

cv.drawContours(img, contours, 3, (0,255,0), 3)

但大多数时候,下面的方法会很有用:

cnt = contours[4]
cv.drawContours(img, [cnt], 0, (0,255,0), 3)

注意:最后两种方法是相同的,但是当你继续前进时,你会发现最后一种方法更有用。

轮廓近似方法

这是cv.findContours函数中的第三个参数。它实际上表示什么?

在上面,我们告诉轮廓是具有相同强度的形状的边界。它存储形状边界的(x,y)坐标。但是它存储了所有坐标吗?这由该轮廓近似方法指定。

如果传递cv.CHAIN_APPROX_NONE,则存储所有边界点。但实际上我们需要所有的积分吗?例如,你找到了直线的轮廓,你是否需要线上的所有点来表示该线?不,我们只需要该线的两个端点。这就是cv.CHAIN_APPROX_SIMPLE的作用。它删除所有冗余点并压缩轮廓,从而节省内存。

下面的矩形图像展示了这种技术。只需在轮廓阵列中的所有坐标上绘制一个圆圈(以蓝色绘制)。第一张图片显示了我用cv.CHAIN_APPROX_NONE(734点)获得的点数,第二张图片显示了一张带有cv.CHAIN_APPROX_SIMPLE(仅4点)的点数,它节省了不少内存!

image31

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

和风细动帘帷暖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值