度度熊的交易计划
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 527 Accepted Submission(s): 181
Problem Description
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题:
喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。
由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。
同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。
由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。
据测算,每一个商品运输1公里,将会花费1元。
那么喵哈哈村最多能够实现多少盈利呢?
Input
本题包含若干组测试数据。
每组测试数据包含:
第一行两个整数n,m表示喵哈哈村由n个片区、m条街道。
接下来n行,每行四个整数a[i],b[i],c[i],d[i]表示的第i个地区,能够以a[i]的价格生产,最多生产b[i]个,以c[i]的价格出售,最多出售d[i]个。
接下来m行,每行三个整数,u[i],v[i],k[i],表示该条公路连接u[i],v[i]两个片区,距离为k[i]
可能存在重边,也可能存在自环。
满足:
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
Output
输出最多能赚多少钱。
Sample Input
2 1
5 5 6 1
3 5 7 7
1 2 1
Sample Output
23
最小费用最大流,因为是获得的利润最大是多少,所以我们把花费整体取反,支出为正,收入为负,然后跑就可以了。但是要注意最重要的一点就是当前再卖物品就要花钱的时候,我们就不要继续累加花费了。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 500+7;
const int inf = 1e9;
int n,m;
int s,e;
int cnt,head[MAXN];
struct node
{
int u,v,w,f,next;
} edge[102005];
void init()
{
cnt=0;
for(int i=0; i<=e; ++i)
{
head[i]=-1;
}
}
void add(int u,int v,int w,int f)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].f=f;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].u=v;
edge[cnt].v=u;
edge[cnt].w=-w;
edge[cnt].f=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
bool vis[MAXN];
int dis[MAXN],pre[MAXN];
bool spfa()
{
int i;
for(i=s; i<=e; ++i)
{
dis[i]=inf;
pre[i]=-1;
vis[i]=0;
}
queue<int>q;
q.push(s);
dis[s]=0;
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].v;
int w=edge[i].w;
int f=edge[i].f;
if(f>0&&dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
pre[v]=i;
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
if(pre[e]==-1)return 0;
return 1;
}
int get_mincost()
{
int max_flow=0,min_cost=0;
while(spfa())
{
if(dis[e] > 0)break;
int p=pre[e];
int flow=inf;
while(p!=-1)
{
flow=min(flow,edge[p].f);
p=pre[edge[p].u];
}
max_flow+=flow;
min_cost+=flow*dis[e];
p=pre[e];
while(p!=-1)
{
edge[p].f-=flow;
edge[p^1].f+=flow;
p=pre[edge[p].u];
}
}
return min_cost;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
s = 0;
e = n+1;
init();
int a,b,c,d;
for(int i = 1; i <= n; ++i)
{
scanf("%d%d%d%d",&a,&b,&c,&d);
add(s,i,a,b);
add(i,e,-c,d);
}
int u,v,w;
while(m--)
{
scanf("%d%d%d",&u,&v,&w);
add(u,v,w,inf);
add(v,u,w,inf);
}
printf("%d\n",-get_mincost());
}
return 0;
}