深度学习之路(二):R-CNN

本文深入解析R-CNN算法,该算法在2014年由Ross Girshick提出,开启了深度学习在目标检测领域的应用。R-CNN结合区域提案和卷积神经网络,通过预训练和微调提升目标检测精度。尽管存在速度慢和特征变形等问题,R-CNN为后续的Fast R-CNN、 Faster R-CNN和YOLO等算法奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

叮咚,前文已经简单的介绍了一些,下面进入第一个算法——R-CNN。

在计算机视觉领域有一个神一样存在的竞赛——ImageNet大赛,各种各样的优秀算法差不多都首先初现在大赛上。讲深度学习应用于计算机视觉最早可以追溯到2012年,在此次大赛上,卷积神经网络CNN一炮走红,成功击败了DMP(可变组建模型,被称为传统目标检测算法最后的辉煌!)。基于此,Ross大神趁火打劫,率先提出了区域卷积网络目标检测框架(R-CNN)。由此,目标检测鸟枪换大炮,正式拉开了基于深度学习的目标检测研究大幕,目标检测算法结束了传统,“GPU暴力美学”时代到来。

首先我们先来看一下论文《Rich feature hierarchies for accurate oject detection and semantic segmentation》(百度云链接:https://pan.baidu.com/s/12pESnsHbFi8ktfIxu729_A,提取码:e84a),这便是Ross Girshick大神于2014年发表的论文,由此提出R-CNN。

一、原文解读

(并非逐字逐句翻译)

过去几年,在PASCAL数据集上目标检测的效果已经达到了一个稳定的效果,并且总结出了一个发展方向:融合多种低维度的特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值