1. 概念
- 描述
用于数据透视,根据特定的列获取聚合值,聚合值将转换为select子句中使用的多列。可以在表名或子查询后指定pivot子句。 - 使用场景
常见的使用场景之一,对数据进行行转列操作。
语法格式
select *
From Table
PIVOT (
{ aggregate_expression [ AS aggregate_expression_alias ] } [ , ... ]
FOR column_list IN ( expression_list )
)
- aggregate_expression:聚合计算表达式,和在sql中正常进行聚合计算使用方式一致。
- column_list:指定进行旋转的列,用于生成新的列。必须是from子句中存在的列(如果From后为具体表则为表中存在的列,如果From后为子查询则为子查询中selece的列)。
- expression_list:指定旋转列下具体的值。当指定别名后则使用别名作为新列名,否则将直接使用列中值作为新字段名。
简单说就是column_list用来指定根据那些列进行旋转,而expression_list用来指定旋转列下具体的值。最终结果中新列名由expression_list和aggregate_expression来决定,为二者的笛卡尔积。
接下来通过具体示例理解pivot的具体用法。
2. 理解
测试数据
CREATE TABLE pivot1 (name STRING, subject string, score INT);
INSERT overwrite table pivot1
select inline(array(
struct('张三','语文',95),
struct('张三','英语',85),
struct('张三','数学',100),
struct('李四','语文',90),
struct('李四','英语',80),
struct('李四','数学',100),
struct('王五','语文',99),
struct('王五','数学',98)
));
2.1. 简单示例
select *
from pivot1
pivot(max(score) as max for subject in('语文','英语','数学'));
-- 执行结果
name 语文 英语 数学
王五 99 NULL 98
李四 90 80 100
张三 95 85 100
== Physical Plan ==
HashAggregate(keys=[name#35], functions=[pivotfirst(subject#36, max(pivot1.`score`) AS `max`#39, 语文, 英语, 数学, 0, 0)])
+- Exchange hashpartitioning(name#35, 200)
+- HashAggregate(keys=[name#35], functions=[partial_pivotfirst(subject#36, max(pivot1.`score`) AS `max`#39, 语文, 英语, 数学, 0, 0)])
+- *(2) HashAggregate(keys=[name#35, subject#36], functions=[max(score#37)])
+- Exchange hashpartitioning(name#35, subject#36, 200)
+- *(1) HashAggregate(keys=[name#35, subject#36], functions=[partial_max(score#37)])
+- *(1) FileScan orc pivot1[name#35,subject#36,score#37] Batched: true, Format: ORC, Location:
select *
from pivot1
pivot(max(score) as max for subject in('语文','英语'));
-- 执行结果
name 语文 英语
王五 99 NULL
李四 90 80
张三 95 85
上述sql中按照subject旋转并仅对score进行单次聚合。因此最终生成的新列完全由expression_list中值决定。
在scala api中pivot函数定义在
RelationalGroupedDataset
类中,该来表示一组用于DataFrame聚合的方法。该类实例由DataSet中groupBy、cube和rollup方法创建。
假如指定A、B、C三个字段进行分组:
cube方法将得到字段全部组合结果进行分组分组,分别得到(A,B,C),(A,B),(A,C),(B,C),(A),(B),©以及全表的分组。
rollup方法将按照从左到右的依次忽略最右侧字段结果进行分组,分别得到(A,B,C),(A,B),(A)以及全表的分组。
使用pivot的前提是先分组,在sql中使用pivot时自动选择为我们选了分组字段。那么自动选择依据是什么?在pivot中没有被选做聚合或旋转的字段将用作分组字段,如果全部字段都参与了pivot则按全局聚合,仅有一条结果。column_list部分即指定的旋转字段,而expression_list用来指定旋转字段中参与计算的值。
因此上述第一个sql中最终的分组字段为name。
2.2. 设置别名
当在expression_list中指定别名后,结果中新列名将为指定的别名。
select name,c,e,m
from pivot1
pivot(max(score) as max for subject in('语文' as c,'英语' as e,'数学' as m));
-- 执行结果
name c e m
王五 99 NULL 98
李四 90 80 100
张三 95 85 100
2.3. 按多列旋转
当column_list中指定多个字段时,须使用括号,并且expression_list中指定的字段值也需要使用括号,二者括号中内容顺序需要保持一致。
select *
from pivot1
pivot(max(score) as max for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五')));
-- 执行结果
[语文, 张三] [语文, 李四] [语文, 王五]
95 90 99
== Physical Plan ==
HashAggregate(keys=[], functions=[pivotfirst(__pivot_col#129, max(pivot1.`score`) AS `max`#128, [语文,张三], [语文,李四], [语文,王五], 0, 0)])
+- Exchange SinglePartition
+- HashAggregate(keys=[], functions=[partial_pivotfirst(__pivot_col#129, max(pivot1.`score`) AS `max`#128, [语文,张三], [语文,李四], [语文,王五], 0, 0)])
+- *(2) HashAggregate(keys=[named_struct(subject, subject#125, name, name#124)#147], functions=[max(score#126)])
+- Exchange hashpartitioning(named_struct(subject, subject#125, name, name#124)#147, 200)
+- *(1) HashAggregate(keys=[named_struct(subject, subject#125, name, name#124) AS named_struct(subject, subject#125, name, name#124)#147], functions=[partial_max(score#126)])
+- *(1) FileScan orc pivot1[name#124,subject#125,score#126] Batched: true, Format: ORC, Location:
for (subject,name) in(('语文','张三'),('语文','李四'),('语文','王五'))
最终决定原表中只有以下数据参与计算
'张三','语文',95
'李四','语文',90
'王五','语文',99
上述sql中根据subject和name进行旋转,并对score字段聚合计算,表中全部字段都参与了旋转和聚合,相当于是对全表进行分组。因此最终结果最有一行。
2.4. 执行多次聚合
select *
from pivot1
pivot(max(score) as max,avg(score) as avg for subject in('语文','英语','数学'));
-- 执行结果
name 语文_max 语文_avg 英语_max 英语_avg 数学_max 数学_avg
王五 99 99.0 NULL NULL 98 98.0
李四 90 90.0 80 80.0 100 100.0
张三 95 95.0 85 85.0 100 100.0
== Physical Plan ==
HashAggregate(keys=[name#210], functions=[pivotfirst(subject#211, max(pivot1.`score`) AS `max`#215, 语文, 英语, 数学, 0, 0), pivotfirst(subject#211, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#216, 语文, 英语, 数学, 0, 0)])
+- Exchange hashpartitioning(name#210, 200)
+- HashAggregate(keys=[name#210], functions=[partial_pivotfirst(subject#211, max(pivot1.`score`) AS `max`#215, 语文, 英语, 数学, 0, 0), partial_pivotfirst(subject#211, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#216, 语文, 英语, 数学, 0, 0)])
+- *(2) HashAggregate(keys=[name#210, subject#211], functions=[max(score#212), avg(cast(score#212 as bigint))])
+- Exchange hashpartitioning(name#210, subject#211, 200)
+- *(1) HashAggregate(keys=[name#210, subject#211], functions=[partial_max(score#212), partial_avg(cast(score#212 as bigint))])
+- *(1) FileScan orc pivot1[name#210,subject#211,score#212] Batched: true, Format: ORC, Location:
select *
from pivot1
pivot(max(score) as max,avg(score) as avg for subject in('语文','英语'));
-- 执行结果
name 语文_max 语文_avg 英语_max 英语_avg
王五 99 99.0 NULL NULL
李四 90 90.0 80 80.0
张三 95 95.0 85 85.0
上述sql中指定按subject列进行旋转并对socre聚合,将按照原表中剩下的name字段进行分组。由于进行2次聚合,因此最终列为旋转值*聚合结果别名。
继续看如下两个sql的计算结果。
select *
from pivot1
pivot(max(score) as max,avg(score) as avg,count(subject) as cnt for name in('张三','李四','王五'));
-- 执行结果
张三_max 张三_avg 张三_cnt 李四_max 李四_avg 李四_cnt 王五_max 王五_avg 王五_cnt
100 93.33 3 100 90.0 3 99 98.5 2
== Physical Plan ==
HashAggregate(keys=[], functions=[pivotfirst(name#386, max(pivot1.`score`) AS `max`#392, 张三, 李四, 王五, 0, 0), pivotfirst(name#386, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#393, 张三, 李四, 王五, 0, 0), pivotfirst(name#386, count(pivot1.`subject`) AS `cnt`#394L, 张三, 李四, 王五, 0, 0)])
+- Exchange SinglePartition
+- HashAggregate(keys=[], functions=[partial_pivotfirst(name#386, max(pivot1.`score`) AS `max`#392, 张三, 李四, 王五, 0, 0), partial_pivotfirst(name#386, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#393, 张三, 李四, 王五, 0, 0), partial_pivotfirst(name#386, count(pivot1.`subject`) AS `cnt`#394L, 张三, 李四, 王五, 0, 0)])
+- *(2) HashAggregate(keys=[name#386], functions=[max(score#388), avg(cast(score#388 as bigint)), count(subject#387)])
+- Exchange hashpartitioning(name#386, 200)
+- *(1) HashAggregate(keys=[name#386], functions=[partial_max(score#388), partial_avg(cast(score#388 as bigint)), partial_count(subject#387)])
+- *(1) FileScan orc pivot1[name#386,subject#387,score#388] Batched: true, Format: ORC, Location:
表中全部字段参与旋转或聚合,因此按照全表分组,结果只有一条数据。最终列个数为(‘张三’,‘李四’,‘王五’)的长度3*聚合函数个数=9
select *
from pivot1
pivot(max(score) as max,avg(score) as avg,count(score) as cnt for name in('张三','李四','王五'));
-- 执行结果
subject 张三_max 张三_avg 张三_cnt 李四_max 李四_avg 李四_cnt 王五_max 王五_avg 王五_cnt
英语 85 85.0 1 80 80.0 1 NULL NULL NULL
语文 95 95.0 1 90 90.0 1 99 99.0 1
数学 100 100.0 1 100 100.0 1 98 98.0 1
== Physical Plan ==
HashAggregate(keys=[subject#541], functions=[pivotfirst(name#540, max(pivot1.`score`) AS `max`#546, 张三, 李四, 王五, 0, 0), pivotfirst(name#540, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#547, 张三, 李四, 王五, 0, 0), pivotfirst(name#540, count(pivot1.`score`) AS `cnt`#548L, 张三, 李四, 王五, 0, 0)])
+- Exchange hashpartitioning(subject#541, 200)
+- HashAggregate(keys=[subject#541], functions=[partial_pivotfirst(name#540, max(pivot1.`score`) AS `max`#546, 张三, 李四, 王五, 0, 0), partial_pivotfirst(name#540, avg(CAST(pivot1.`score` AS BIGINT)) AS `avg`#547, 张三, 李四, 王五, 0, 0), partial_pivotfirst(name#540, count(pivot1.`score`) AS `cnt`#548L, 张三, 李四, 王五, 0, 0)])
+- *(2) HashAggregate(keys=[subject#541, name#540], functions=[max(score#542), avg(cast(score#542 as bigint)), count(score#542)])
+- Exchange hashpartitioning(subject#541, name#540, 200)
+- *(1) HashAggregate(keys=[subject#541, name#540], functions=[partial_max(score#542), partial_avg(cast(score#542 as bigint)), partial_count(score#542)])
+- *(1) FileScan orc pivot1[name#540,subject#541,score#542] Batched: true, Format: ORC, Location:
表中subject字段未参与旋转或聚合,因此按照subject进行分组。然后在对3个人分别计算聚合结果。