学习记录-PINN

PINN(物理信息神经网络)

图解

 

训练数据

1.初始条件和边界条件的采样点集;

2.偏微分方程残差采样(类网格点选取or位随机离散点选取)的配置点集;

3.标签数据用来辨识方程参数的已知数据样本集

发展

Jagtap等[6]在激活函数中引入超参数变为自适应激活函数,加速收敛速度;

Shin等[7]针对椭圆型和抛物线型偏微分方程,证明了PINNs训练得到的网络可以一致收敛到偏微分方程的解

Lu等[8]基于Tensorflow开发了Python工具包DeepXDE整合了PINNS及其衍生,可以进行多保真度数据建模,并且从数据中直接学习非线性算子和函数关系;

英伟达[9]开发了SimNet工具包,用于求解偏微分方程的正问题、逆问题和数据融合问题

理解

属于深度学习的一种,损失函数包含物理场(理解为正则项,增加泛化性)和边界条件;

通过神经网络求解偏微分方程(例如NS方程),输入Var(x,t),输出y(x,t)        *x,t物理场;

通过损失函数中物理场的信息,将神经网络预测结果约束在物理规律之内,使得机器学习方法根本上摆脱了对实验或模型数据的依赖性,提高了模型的可理解性[4]

补充

偏微分方程与神经网络:ResNet;PINN及其衍生(cPINNs,离散域非线性守恒律方程;fPINNs,分数阶偏微分方程;nPINNs,非局部椭圆型偏微分方程;sPINNs,随机偏微分方程;vPINNs,以Petrov-Galerkin方法为基础求解偏微分方程;XPINNs,求解任意几何域上的非线性偏微分方程)[3]

商业应用:英伟达、ANSYS、西门子[3]

未来展望:正问题的精度、逆问题的鲁棒性[3]

Ref

[1] Physics-informed machine learning

[2] Physics-informed neural networks (PINNs) for fluid mechanics: A review

[3] 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解

[4] 基于物理信息神经网络的传热过程物理场代理模型的构建

[5] GitHub - maziarraissi/PINNs: Physics Informed Deep Learning: Data-driven Solutions and Discovery of Nonlinear Partial Differential Equations

[6] Adaptive activation functions accelerate convergence in deep and physics-informed neural networks

[7] On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs

[8] DeepXDE: A deep learning library for solving differential equations

[9] https://developer.nvidia.com/simnet

### 关于元学习与物理信息神经网络 (PINN) 的结合 #### 背景介绍 元学习(Meta-Learning),也被称为“学会学习”,是一种使机器学习算法能够快速适应新任务的技术。其核心目标是从以往的经验中提取通用的知识,从而加速对未知问题的学习效率[^5]。而物理信息神经网络(PINN)则通过将物理约束嵌入到神经网络的训练过程中,显著提高了对于复杂物理系统的建模能力和准确性[^2]。 当两种技术相结合时,可以通过元学习的方法来优化 PINN 中的关键参数设置以及初始化策略,进一步提升其在多场景下的表现和泛化能力。这种组合不仅保留了 PINN 对物理规律的高度契合特性,还引入了更强的任务自适应机制。 #### 技术实现路径 一种可能的方式是在每次新的物理仿真任务到来之前利用少量样本进行快速调整,即所谓的 Few-Shot Learning 场景。具体来说: 1. **定义超参空间** 需要先确定哪些方面适合采用元学习来进行调节。例如,可以选择不同的激活函数形式、隐藏层结构或是正则化强度等因素作为可变维度[^6]。 2. **构建基础模型集合** 使用一组预设的基础配置创建多个初始版本的 PINNs,并记录它们分别针对各类简单测试用例的表现情况[^7]。 3. **实施梯度更新规则** 基于 MAML(Meta-Learning Algorithm with Model-Agnostic Meta-Learning) 或其他相似框架的思想,在每一轮迭代里交替执行两个阶段的操作——全局共享知识积累和个人局部特征捕捉[^8]。 以下是简单的伪代码展示如何集成上述思路: ```python def meta_train(pinn_models, tasks): for task in tasks: # Sample a few-shot dataset from current task. support_set, query_set = sample_few_shot(task) for pinn_model in pinn_models: # Inner loop adaptation on the sampled data. adapted_weights = inner_loop_adaptation(support_set, pinn_model.weights) # Evaluate performance and compute gradients w.r.t original weights. loss = evaluate_on_query(query_set, adapted_weights) grads = compute_gradients(loss, pinn_model.weights) # Outer loop update across all models/tasks. apply_outer_update(grads, learning_rate=0.01) ``` 此过程强调的是让整个系统具备跨领域迁移的能力,即使面对全新的物理现象也能迅速找到合理的解决方案[^9]。 #### 实际案例探讨 考虑到前面提到的内容,下面列举几个潜在的研究方向及其意义: - 在材料科学领域内开发新型合金成分设计工具; - 探索气候变化条件下海洋环流变化趋势预测的新途径; - 改善药物分子筛选流程中的动力学行为评估精度等。 以上每一个例子都涉及到大量不确定因素的影响,因此非常适合运用元学习增强版的 PINN 方法论去探索更深层次的理解并提供定量支持[^10]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值