MCP:AI 时代的工具接口标准?

 点击下方“JavaEdge”,选择“设为星标”

第一时间关注技术干货!

免责声明~

任何文章不要过度深思!

万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」

不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人

怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」









































0 前言

自从 OpenAI 在 2023 年推出函数调用(Function Calling),我一直思考,咋能真正解锁 AI Agent与工具的生态系统。随基础模型越来越智能,AI Agent与外部工具、数据和 API 的交互方式却变得越来越碎片化——开发者需针对每一个系统单独编写业务逻辑,让Agent能够适配不同环境。

1 标准化

显然,我们需要一个标准化的接口来执行任务、获取数据并调用工具。在互联网时代,API 让不同软件之间可以相互通信,成为了软件的通用语言。但对 AI 模型,目前还缺这样的标准。

2024 年 11 月,**模型上下文协议(Model Context Protocol,MCP)**发布,迅速引起关注,被认为可能成为这一问题的解决方案。本文探讨:

  • MCP 是什么?

  • 它如何改变 AI 与工具的交互方式?

  • 开发者已经用 MCP 构建了哪些应用?

  • MCP 仍然面临哪些挑战?

2 什么是 MCP

MCP 是一种开放协议,旨在让不同系统能够为 AI 模型提供可泛化的上下文信息。它规定了AI Agent如何调用外部工具、获取数据,并与服务交互

Resend MCP 服务器可以同时与多个 MCP 客户端交互,使其具备邮件发送能力。MCP 灵感源于语言服务器协议(LSP,Language Server Protocol)。在 LSP 中,当用户在代码编辑器中输入时,客户端会向语言服务器请求自动补全建议或代码诊断。

MCP进一步拓展,采用面向 AI Agent的执行模式

  • LSP 主要是被动的,只会在 IDE 发请求时提供反馈

  • MCP 则支持 AI Agent自主决策,可以基于上下文信息选择合适的工具,并决定调用顺序,实现复杂任务的自动化

  • MCP 还支持“人类参与(human-in-the-loop)”,允许人在关键节点提供额外信息或批准操作

3 MCP目前的热门应用

如有够多的 MCP 服务器,用户就能将任何 MCP 客户端变成“万能应用”

3.1 Cursor

作为一个代码编辑器,同时也是高质量 MCP 客户端。安装不同 MCP 服务器,可变身为:

  • Slack 客户端(连接 Slack MCP 服务器)

  • 邮件发送工具(连接 Resend MCP 服务器)

  • AI 图像生成器(连接 Replicate MCP 服务器)

更强大的,用户可组合多个 MCP 服务器,解锁新应用场景。如Cursor中,用户可:

  • 使用前端 UI 生成 MCP 服务器,自动创建网页界面

  • 让 AI Agent调用图像生成 MCP 服务器,为网页自动生成一张配图

这种跨工具协作的能力,正是 MCP 带来突破。

4 核心应用方向

4.1 面向开发者的工作流优化

对开发者,MCP 一大价值是减少切换工具的时间

开发者的痛点
★ 

“我不想为做某个任务而离开 IDE。”

MCP 服务器正满足需求,如:

  • Postgres MCP 服务器 → 让开发者直接在 IDE 里执行 SQL 查询,而无需打开数据库管理界面

  • Upstash MCP 服务器 → 让开发者在 IDE 里管理缓存索引

  • Browsertools MCP 服务器 → 让代码Agent访问浏览器控制台日志,辅助调试

MCP 还能帮助 AI Agent动态获取代码相关的上下文,如:

  • 爬取网页内容,为Agent提供实时信息

  • 通过 API 自动生成 MCP 服务器,让 AI Agent能直接访问工具,而无需手动集成

即开发者可更少写模板代码,更多专注于业务逻辑

4.2 全新的 AI 交互体验

尽管 MCP 目前在开发者社区最受欢迎,但它的潜力远不限于技术领域。如:

  • Claude Desktop → 让非技术用户也能轻松使用 MCP 服务器,如营销文案生成、设计、客服等任务

  • Highlight MCP 客户端 → 允许用户通过 @ 命令调用 MCP 服务器,将生成内容直接输入到任何应用

  • Blender MCP 服务器 → 让不会建模的用户,通过自然语言描述 3D 模型,AI Agent自动生成对应的图像或动画

社区还正在开发适用于 Unity 和 Unreal Engine 的 MCP 服务器,AI 生成 3D 内容的流程正在变得越来越完善。

5 MCP现状

MCP生态仍处早期阶段,主要趋势:

  • 高质量的 MCP 客户端仍以开发工具为主,但未来会有更多面向商业场景客户端

  • 大多数 MCP 服务器是本地优先(local-first)的,未来可能会向远程 MCP 服务器扩展

  • MCP 市场和托管解决方案正在兴起,如 Mintlify 的 MCP 市场、Smithery 和 OpenTools,让开发者可以更容易发现和共享 MCP 服务器

6 MCP的挑战

6.1 托管与多租户支持

目前MCP服务器主要1对1,未来需支持多个用户同时访问,尤其SaaS场景。

6.2 身份验证(Authentication)

MCP 目前没有标准的身份验证机制,开发者需要自己实现 OAuth 或 API 令牌管理

6.3 权限管理(Authorization)

MCP 目前的权限是基于会话的,未来需要更细粒度的访问控制。

6.4 网关(Gateway)

未来 MCP 可能需要一个集中式网关,类似 API 网关,管理身份验证、授权、流量控制等功能

6.5 MCP 服务器发现与注册机制

MCP 服务器目前需要手动配置,未来可能会有一个类似 npm 或 RapidAPI 的 MCP 服务器注册中心,让 AI Agent自动发现并集成工具

7 MCP未来:AI Agent的 API 标准?

MCP目前像2010时的 API 生态——新颖但仍处早期阶段。若MCP 成为 AI Agent的标准接口,会咋样?

  • 工具竞争力将取决于 AI Agent能否发现并调用它,而不仅是 API 设计是否优秀。

  • 定价模式可能改变,AI Agent可能会动态选择最便宜、最快、最相关的工具,而不是仅仅依赖市场占有率。

  • 文档将变得至关重要,因为 AI Agent需要机器可读的格式来理解 MCP 服务器的功能。

  • API 将不再是终点,开发者需要围绕具体场景构建 MCP 服务器,而不是简单地开放 API 端点。

MCP 正在重塑 AI Agent生态,但它的未来取决于开发者如何解决当前的基础问题。如果一切顺利,MCP 可能会成为AI Agent调用工具的默认接口,解锁全新的自主、多模态、深度集成的 AI 体验。

本文已收录在Github Java-Interview-Tutorial,关注我,紧跟本系列专栏文章,咱们下篇再续!

  • 🚀 魔都架构师 | 全网30W+技术追随者

  • 🔧 大厂分布式系统/数据中台实战专家

  • 🏆 主导交易系统亿级流量调优 & 车联网平台架构

  • 🧠 AIGC应用开发先行者 | 区块链落地实践者

  • 🌍 以技术驱动创新,我们的征途是改变世界!

  • 👉 实战干货:编程严选网

关注我,紧跟本系列专栏文章,咱们下篇再续!

加我好友,一起AI探索交流:

写在最后

编程严选网http://www.javaedge.cn/

专注分享软件开发全场景最佳实践,点击文末【阅读原文】即可直达~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值