2023年MathorCup数模C题赛题

文章讨论了电商物流网络在面对用户订单波动、突发事件导致场地停用等问题时的应对策略。主要任务包括建立线路货量预测模型,设计物流场地关闭后的货量再分配方案,以及考虑网络动态调整的新策略。此外,还涉及物流场地和线路重要性的评估及新增场地和线路的规划,以增强网络的鲁棒性和效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C 题 电商物流网络包裹应急调运与结构优化问题

电商物流网络由物流场地(接货仓、分拣中心、营业部等)和物流场 地之间的运输线路组成, 如图 1 所示。受节假日和“双十一” 、“618”等促销 活动的影响,电商用户的下单量会发生显著波动,而疫情、地震等突发事 件导致物流场地临时或永久停用时,其处理的包裹将会紧急分流到其他物 流场地,这些因素均会影响到各条线路运输的包裹数量,以及各个物流场
地处理的包裹数量。


图 1 电商物流网络示意图

如果能预测各物流场地及线路的包裹数量(以下简称货量),管理者将 可以提前安排运输、分拣等计划,从而降低运营成本,提高运营效率。特 别地,在某些场地临时或永久停用时,基于预测结果和各个物流场地的处 理能力及线路的运输能力,设计物流网络调整方案,将会大大降低物流场 地停用对物流网络的影响,保障物流网络的正常运行。
附件 1 给出了某物流网络在 2021-01-01 至 2022- 12-31 期间每天不同物 流场地之间流转的货量数据, 该物流网络有 81 个物流场地, 1049 条线路。 其中线路是有方向的, 比如线路 DC1→DC2 和线路 DC2→DC1 被认为是两条线路。假设每个物流场地的处理能力和每条线路的运输能力上限均为其 历史货量最大值。
基于以上背景,请你们团队完成以下问题:
问题 1:建立线路货量的预测模型,对 2023-01-01 至 2023-01-31 期间 每条线路每天的货量进行预测, 并在提交的论文中给出线路 DC14→DC10、 DC20→DC35 、DC25→DC62 的预测结果。
问题 2:如果物流场地 DC5 于 2023-01-01 开始关停, 请在问题 1 的预 测基础上, 建立数学模型, 将 DC5 相关线路的货量分配到其他线路使所有 包裹尽可能正常流转,并使得 DC5 关停前后货量发生变化的线路尽可能少, 且保持各条线路的工作负荷尽可能均衡。如果存在部分日期部分货量没有 正常流转, 你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正 常流转的包裹日累计总量尽可能少。正常流转时,请给出因 DC5 关停导致 货量发生变化的线路数及网络负荷情况;不能正常流转时,请给出因 DC5 关停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况。
问题 3:在问题 2 中,如果被关停的物流场地为 DC9,同时允许对物 流网络结构进行动态调整(每日均可调整),调整措施为关闭或新开线路, 不包含新增物流场地,假设新开线路的运输能力的上限为已有线路运输能 力的最大值。请将 DC9 相关线路的货量分配到其他线路, 使所有包裹尽可 能正常流转, 并使得 DC9 关停前后货量发生变化的线路数尽可能少, 且保 持各条线路的工作负荷尽可能均衡。如果存在部分日期没有满足要求的流 转方案, 你们的分流方案还应使得 2023-01-01 至 2023-01-31 期间未能正常 流转的包裹日累计总量尽可能少。正常流转时, 请给出因 DC9 关停导致货量发生变化的线路数及网络负荷情况; 不能正常流转时, 请给出因 DC9 关 停导致货量发生变化的线路数、不能正常流转的货量及网络的负荷情况; 同时请给出每天的线路增减情况。

问题 4:根据附件 1,请对该网络的不同物流场地及线路的重要性进行 评价;为了改善网络性能,如果打算新增物流场地及线路,结合问题 1 的 预测结果, 探讨分析新增物流场地应与哪几个已有物流场地之间新增线路, 新增物流场地的处理能力及新增线路的运输能力应如何设置?考虑到预测 结果的随机性,请进一步探讨你们所建网络的鲁棒性。

### 2023 MathorCup详情 #### 开始时间和选建议 2023第四届MathorCup高校数学建模挑战——大数据竞于昨天6点正式开。对于参者而言,理解比目并选择合适的主至关重要。为了帮助参者做出明智的选择,提供了初步的选建议及思路[^1]。 #### 论文提交指南 针对如何顺利提交论文这一重要环节,官方也给出了详细的指导说明。这不仅涵盖了具体的提交步骤,还包括了对论文格式的要求和规范,确保每位参与者都能按照规定完成作品递交工作[^2]。 #### B方法概述 特别值得注意的是B的具体解决方案。该方案强调通过构建特定周期内的时序数据特征来解决实际问,并提出了计算非促销期与促销期间需求量比例的方法以得出最终预测结果。此过程涉及到了复杂的算法设计和技术实现细节[^3]。 ```python import pandas as pd def calculate_promotion_coefficient(dataframe, key_column='main_key', promotion_period='promotion_time'): """ Calculate the promotion coefficient based on given dataframe. :param dataframe: DataFrame containing sales data with columns including 'demand' and periods information. :param key_column: Column name representing unique keys (e.g., product IDs). :param promotion_period: Boolean column indicating whether a period is during promotion or not. :return: A dictionary mapping each main key to its corresponding promotion coefficient. """ coefficients = {} grouped_data = dataframe.groupby(key_column) for key, group in grouped_data: non_promo_demand = group[group[promotion_period] == False]['demand'].mean() promo_demand = group[group[promotion_period] == True]['demand'].mean() if non_promo_demand != 0: coeff = promo_demand / non_promo_demand else: coeff = 1 coefficients[key] = coeff return coefficients ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值