在许多国家,来自可再生能源的发电,特别是风力发电,正在迅速增加。这些能源由于其环境效益和低成本而越来越受欢迎。然而,它们带来了一个重大的挑战:它们的功率输出变化巨大,难以控制。这种可变性是将这些源集成到现有电网中的一个主要障碍。为了推动将风能和太阳能发电设施纳入传统的发电网络,必须解决发电变化所带来的挑战,包括系统分配、储备管理和发电单元的调度。因此,需要预测和监管方法来帮助公用事业公司和研究人员在短期和长期时间尺度上预测风速和太阳红外偏差。
任务:提供的数据集包括一个月的来自12个风力发电机和11个太阳能发电厂的发电数据。
1. 预测模型改进
问题:如何开发、优化、集成和评估多种机器学习模型,以提高风力发电和太阳能发电的短期和长期预测准确度?
2. 数据驱动的调度策略
问题:如何利用数据驱动的方法来优化发电调度策略,以应对风能和太阳能发电的不可预测性?
- 目标:建立一种基于历史数据的最优调度方案,以最大化使用可再生能源的同时,保障电网的稳定性。
3. 能源供需优化
问题:如何通过分析和利用历史数据,解决能源需求与供能之间的不匹配问题?
4. 智能预警系统
问题:如何构建一套基于大数据的智能预警系统来检测和预防风能和太阳能发电系统的潜在故障和不稳定性?
5. 综合能源系统规划
问题:在综合考虑风能和太阳能发电系统与其他常规发电设施的情况下,如何利用数据分析来优化整个能源系统的规划与运行?
风力与太阳能发电波动预测与备用机组调度优化模型研究
摘要
随着可再生能源的应用日益广泛,风力发电和太阳能发电的波动性成为影响电力系统稳定运行的重要挑战。本文提出了一种基于历史功率数据的预测模型,旨在准确预测未来1至120秒内的发电量,并识别显著波动。对风力发电系统的数据进行了预处理,包括使用线性插值填补缺失值和通过箱型图判断和处理异常值,确保数据的连续性和完整性。
波动预测与分类,波动分类:利用随机森林模型对风电场和太阳能电场的波动模式进行分类。初始阈值t=0.1,分类精度为0.961。进一步优化阈值t,提高了分类精度。预测模型:采用支持向量回归(SVR)和随机森林回归(RF)模型进行未来发电量的预测。SVR模型的RMSE为7.49,RF模型的RMSE为6.72,明显优于传统线性回归方法(RMSE为8.15)。
备用机组调度优化,提出了一个双目标优化模型,目标是在波动阈值t=0.1和目标概率r=0.95下,优化备用机组的比例与启停时机。通过粒子群优化算法确定最优备用机组比例为30%,并为不同波动强度提供了启停策略,实现了电站稳定性与成本最小化。
通过实验对比验证了模型的有效性和精确性,展示了其在风力发电波动预测及备用机组调度中的应用潜力。
关键词:风力发电;太阳能发电;波动预测;备用机组调度;支持向量回归;随机森林回归;粒子群优化
二、数据来源和预处理
(一)数据来源
在本研究中,我们采用了两个具有代表性的数据集,分别为风力发电数据集 W1 和太阳能发电数据集 S1。
风力发电数据集 W1
数据内容:
参数: 风速和发电功率
风力发电机数量: 12台
额定功率: 2.x MW(具体数值未给出,可进一步补充)
风电场面积: 4x4 km²
数据长度: 一个月(2009年7月31日至2009年8月29日)
采样频率: 1 Hz
数据来源: 该数据集是由 wpd windmanager GmbH(德国不来梅)提供的。太阳能发电数据集 S1
数据内容:
参数: 太阳辐射强度
传感器数量: 11台
数据长度: 一个月(1993年6月1日至1993年6月30日)
采样频率: 1 Hz
数据来源: 该数据集由德国奥尔登堡大学屋顶平台上的测量设备记录。奥尔登堡大学的数据采集设备能够持续监测太阳能辐射强度。