2025年电工杯赛题浅析-助攻快速选题

本文将为大家对电工杯进行详细介绍,旨在十分钟内帮助大家快速了解每个题目具体难点、涉及模型等。
初步预估赛题难度   A:B=4:5
初步预测选题人数   A:B=2:1

图片

图片

A 题:光伏电站发电功率日前预测问题

数据准备与预处理

数据源选择:选取一年内、15 min 分辨率的光伏功率与 NWP 数据(如 ERA5、NSRDB、PVOutput 等),在论文正文表格中列出:站址经纬度、装机容量、时间范围、NWP 变量(气温、辐照、云量、风速等)及来源链接。

缺失值和异常值处理:按时间连续性插值或剔除;对功率超出物理极限(负值或大于装机容量)的点进行剔除或修正。

特征工程:

l天文特征:太阳高度角、方位角、理论可发功率(基于 PVWatts/Solis 模型)。

l气象特征:NWP 原始变量及其滚动统计(过去1 h、3 h 均值、标准差等)。

l时序特征:时刻编码(小时、日内周期、节假日标签)、季节标签。

训练/测试集划分

按题目要求:第 2、5、8、11 个月最后一周做测试集,其余做训练集。

确保训练/测试分布的一致性,并记录每次切分的时间区间。

光伏电站功率预测旨在利用历史发电功率与数值天气预报(NWP)数据,对未来 24–48 h 的发电功率进行精准预报。

问题 1:基于历史功率的发电特性分析

问题描述:研究光伏电站发电功率的长周期(季节性)和短周期(日内)变化规律,通过对比实际功率与理论可发功率分析发电特性。

1.1理论可发功率计算

l根据光伏电站地理位置(经纬度、海拔、倾角)

l利用太阳高度角计算公式:sin h = sin φ sin δ + cos φ cos δ cos ω 

l计算不同时间的太阳辐照强度和理论可发功率

l考虑季节变化对太阳倾角的影响

1.2长周期特性分析(季节性变化)

按月份统计发电功率均值,分析春夏秋冬的发电规律

计算理论可发功率与实际功率的季节性偏差

绘制年度发电功率变化曲线,识别峰值和低谷期

1.3短周期特性分析(日内波动)

分析典型晴天、阴天、雨天的日内发电曲线

统计不同天气条件下的发电功率分布特征

计算日内功率波动系数和变异系数

创新改进点:

引入机器学习聚类方法识别典型发电模式

问题 2:仅基于历史功率的日前预测模型

问题描述:仅使用历史发电功率数据建立日前24-48小时功率预测模型,评估预测精度。

求解思路:数据预处理→特征工程→模型训练→预测验证→精度评估

2.1数据预处理

数据清洗:处理异常值、缺失值

特征工程:提取时间特征(小时、日、月、季节)

归一化处理

2.2模型选择与建立

时间序列模型:ARIMA、SARIMA考虑季节性

机器学习模型:随机森林、支持向量机、神经网络

深度学习模型:LSTM、GRU处理时间序列依赖关系

组合模型:集成多种模型提高预测精度

2.3模型训练与验证

按要求划分训练集和测试集(2、5、8、11月最后一周为测试集)

使用滑动窗口法进行时间序列预测

交叉验证避免过拟合

2.4预测精度评估

计算RMSE、MAE、MAPE等评价指标

仅在白昼时段计算误差统计指标

问题 3:融入 NWP 信息的预测模型

问题描述:将数值天气预报信息融入预测模型,分析NWP数据对预测精度的改进效果,提出场景划分方案。

求解思路:NWP数据分析→多源数据融合→场景划分→模型优化→效果验证

可能使用的模型:

多元回归模型(线性/非线性) 

深度神经网络(多输入融合架构)

注意力机制模型(突出关键气象因子)

分层预测模型(粗预测+精细化修正) 

创新改进点:

动态特征权重学习(不同场景下气象因子重要性自适应)

多模态数据融合架构(文本天气描述+数值预报) 

不确定性量化预测(预测区间而非点预测)

问题 4:NWP 空间降尺度的可行性

问题描述:研究将粗分辨率NWP数据通过空间降尺度技术获得高分辨率气象信息,验证其对光伏功率预测精度的改进效果。

求解思路:降尺度方法选择→高分辨率数据生成→预测模型重构→精度对比→可行性分析

可能使用的模型:

统计降尺度模型:多元回归、主成分分析

机器学习降尺度:神经网络、随机森林、深度卷积网络

空间插值模型:克里金、样条函数、反距离权重

物理约束模型:融入地形、土地利用等先验知识

创新改进点:

多源遥感数据融合降尺度(卫星+地面观测+再分析数据) 

生成对抗网络降尺度(GAN生成高分辨率气象场) 

时空联合降尺度(同时考虑时间和空间相关性)

B题:城市垃圾分类运输的路径优化与调度

问题一:单一车辆类型下的基础路径优化

问题描述:单类型垃圾、单类型车辆的经典车辆路径问题(VRP),以最小化总行驶距离为目标。

求解思路:数学建模→算法设计→求解实现→复杂度分析→局限性讨论

决策变量

图片

问题二:多车辆协同与载重约束优化

问题描述:多类型垃圾、多类型车辆的复杂VRP问题,考虑载重、容积、成本等多约束条件。

求解思路:问题分解→多目标建模→协同优化算法→约束处理→时间约束扩展

1.模型扩展

图片

问题三:中转站选址与碳排放优化

问题描述:设施选址与车辆路径的联合优化问题,考虑中转站容量、时间窗、碳排放等复杂约束。

求解思路:三层决策建模→两阶段分解算法→协同优化机制→非对称路网处理

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值