过拟合&&小样本&&样本不均衡一些记录

过拟合

原因

  • 样本数量太少,取样方法错误,样本标签错误包含噪声等,导致样本和想要实现的分类标准不匹配

解决方法

数据角度

  • 数据增强

模型角度

  • 降低模型复杂度(神经网络层数,树的深度)

模型对数据的依赖角度

  • 正则化方法(L1,L2 提前停止,dropout,看验证集loss)
  • 集成学习
  • 权值衰减

小样本

深度学习中小样本学习,这个大佬总结得好


样本不均衡

10000正 1000负

解决方法

数据角度

  • 过采样小样本、数据增强方法(GAN,添加噪声/颜色随机抖动,复制粘贴,小样本之间加权组合制造新样本)
  • 欠采样大样本
  • 调整数据的权值,大样本的权值降低

模型角度

  • bagging集成方法,将大样本分成很多份,分别和全部小样本训练,得到
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值