【线性代数复习笔记】同济大学版第三章和第四章 矩阵的初等变换与线性方程组与向量组的线性相关性
1.矩阵的初等变换
矩阵的三种初等变换及性质
行阶梯形矩阵
对行最简形矩阵再施以初等列变换,可变为形状更简单的矩阵,称为标准型:
矩阵的初等变换的性质
性质二的推论:
2.矩阵的秩
矩阵子式定义:
矩阵的初等变换并不改变矩阵的秩:
矩阵的秩的定义:
可逆矩阵的秩等于矩阵的阶数,故可逆矩阵又叫做满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵。
定理2的推论:
矩阵的秩的性质
3.线性方程的解
由定理3得到的推论:
第四章分界线
1.向量组及其线性组合
补充:单位坐标向量:
2.向量组的线性相关性
推论:
补充:n维单位坐标向量组是线性无关的。
线性相关性的一些重要结论
看着真懵啊。。。。
3.向量组的秩
最大无关组有很多个。
根据向量组的秩的定义和定理6可以得到:
以上为定理2和定理3的重述
4.线性方程组的解的结构
线性齐次方程
线性非齐次方程
5.向量空间
下面这两个例题可以很好的帮助理解定义6