【线性代数复习笔记】同济大学版第三章和第四章 矩阵的初等变换与线性方程组与向量组的线性相关性

1.矩阵的初等变换

矩阵的三种初等变换及性质

在这里插入图片描述

行阶梯形矩阵

在这里插入图片描述
对行最简形矩阵再施以初等列变换,可变为形状更简单的矩阵,称为标准型
在这里插入图片描述

矩阵的初等变换的性质

在这里插入图片描述


在这里插入图片描述
性质二的推论:
在这里插入图片描述

2.矩阵的秩

矩阵子式定义:
在这里插入图片描述


矩阵的初等变换并不改变矩阵的秩:
在这里插入图片描述

矩阵的秩的定义:
在这里插入图片描述
可逆矩阵的秩等于矩阵的阶数,故可逆矩阵又叫做满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵。


在这里插入图片描述
定理2的推论:
在这里插入图片描述


矩阵的秩的性质

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.线性方程的解

在这里插入图片描述
由定理3得到的推论:
在这里插入图片描述
在这里插入图片描述


第四章分界线

1.向量组及其线性组合

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
补充:单位坐标向量:
在这里插入图片描述

2.向量组的线性相关性

在这里插入图片描述
推论:
在这里插入图片描述
在这里插入图片描述

补充:n维单位坐标向量组是线性无关的。

线性相关性的一些重要结论

在这里插入图片描述
看着真懵啊。。。。

3.向量组的秩

在这里插入图片描述
在这里插入图片描述
最大无关组有很多个。


在这里插入图片描述
根据向量组的秩的定义和定理6可以得到:
在这里插入图片描述
在这里插入图片描述
以上为定理2和定理3的重述

4.线性方程组的解的结构

线性齐次方程

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

线性非齐次方程

在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

5.向量空间

在这里插入图片描述
下面这两个例题可以很好的帮助理解定义6
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

瞲_大河弯弯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值